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FOREWORD 

It is an established tradition that researchers from many countries get 

together on the average every three years for a two week Advanced Studies 

Institute on Automatic Speech Recognition and Synthesis. According to ASI 

policies the Institute is financed by NATO. This book contains the texts of 

lectures and papers contributed by the attendees of the ASI which was held July 

2 - 14, 1984, at Bonas, Gers, France. Focussed on New Systems and 

Architectures for Automatic Speech Recognition and Synthesis, this book is 

divided into 4 parts: 

(a) Review of ba8ic algorithm8 

(b) SY8tem architecture and VLSI for automatic Speech 

(c) Software 8Y8tem8 for automatic 8peech recognition, 

(d) Speech 8ynthe8i8 and phonetic8. 

Due to the international nature of the Institute, the readers will find in this 

book different styles, different points of view and applications to different 

languages. This reflects also some characteristics of the International Association 

for Pattern Recognition (!APR) whose technical committee on Speech Recognition 

has organized this ASI. 

Proposed contributions have been reviewed by an Editorial Committee 

composed of W. Ainsworth (Kent), R. Bisiani (Pittsburgh), J. P. Haton (Nancy), 

W. Hess (Munich), J. L. Houle (Montreal), P. Laface (Turin), R. Moore (Malvern), 

H. Niemann (Erlangen) and J. Ohala (Berkeley). 

Typesetting of the book was performed using SYMSET facilities developed 

entirely by the Department of Computer Science at Concordia University. Special 

thanks are due to L. Lam, H. Monkiewicz and L. Thiel. 

Montreal, Canada 

May 1985 

R. De Mori and C. Y. Suen 
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AN OVERVIEW OF DIGITAL TECHNIQUES FOR PROCESSING 

SPEECH SIGNALS 

Murat Kunt 

Signal Proeesing Laboratory 

Swiss Federal Institute of Teehnology 

16 Ch. de Bellerive 

CH - 1007 Lausanne, Switzerland 

and 

Heinz Hugli 

Mireroteehnique Institute 

University of Neuehatel 

Rue de la Maladiere 71 

CH - 2007 Neuehatel, Switzerland 

ABSTRACT 

This paper discusses major digital signal processing methods used in 

processing speech signals. Basic tools, such as the discrete Fourier transform, the 

z transform and linear filter theory are briefly introduced first. A general view 

of fast transformation algorithms and most widely used particular fast 

transformations are given. Linear prediction is then described with a particular 

emphasis on its lattice structure. A brief introduction to homomorphic processing 

for multiplied and convolved signals and to its applications in speech processing is 

given. Recalling some fundamentals of the speech signal, various speech analysis 

and synthesis models are described, showing which kind of processing methods are 

NATO AS! Series, Vol. F16 
New Systems and Architectures for Automatic Speech 
Recognition and Synthesis. Edited by R. De Mori and C. Y. Suen 
© Springer-Verlag Berlin Heidelberg 1985 
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involved. Finally, two aspects of speech recognition are presented: feature 

traction and pattern matching using dynamic time warping. 

1. INTRODUCTION 

Because of its multidisciplinary character, digital signal processing became 

increasingly important in a number of scientific and technical areas. Continuous 

interaction between the methods and the particular applications have led to an 

avalanche on both sides. Increasingly sophisticated methods are developed to 

fulfil wider needs of a large number of applications. There is no doubt that one 

of the major application areas of digital signal processing is speech signals. Over 

the last two decades, considerable effort has been devoted to analyse, code, model, 

synthesize and recognize speech signals. A dozen of books are already available, 

presenting various aspects of digital speech processing. 

This paper attempts to give a tutorial review of major digital signal 

processing methods used in processing speech signals. Because of space limitations 

and the wide range of the subject, in depth treatments are omitted. Essence of 

the methods and insight for the interpretation of the results are indicated 

whenever possible. In section two, basic methods are defined such as the discrete 

Fourier transform, correlation functions, the z transform, the convolution, and the 

linear system theory. A general view of fast transformation algorithms is given, 

showing structures for hardware and software. Commonly used fast 

transformations are also briefly indicated. The last part of this section presents 

the linear prediction models and tools for one dimensional signals and introduces 

its lattice structure, a structure that is modular and hence suitable for various 

implementations. In section three, homomorphic processing of multiplied and 

convolved signals is discussed with particular emphasis on its applications to 

speech signals, particularly for deconvolution. Section four gives an overview of 

the speech analysis and synthesis methods using previously defined tools. Speech 

recognition is summarized in section five with a particular emphasis on pattern 
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matching. The objective, in these last two sections, is to point out particular 

digital signal processing methods used for reaching the goals. 

2.0 BASIC METHODS 

In this section basic signal processing methods are defined and their use in 

speech processing are discussed. Analysis and synthesis tools for digital signals, 

such as the discrete Fourier transform and the correlation function, and for 

systems, such as the z transform and the convolution are described first. A brief 

discussion on linear filters and fast transformations is presented next. The section 

ends with a rather detailed description of linear prediction. For more detail, the 

reader may consult [11 and [21. 

THE DISCRETE FOURIER TRANSFORM 

The discrete Fourier transform of a digital signal x(k) is a complex series 

defined by: 

X(n) 

with n - -N/2, ... , N/2-1 

kO+N-1 

E x(k)exp(-j21rkn/N) 
k=kO 

(1) 

In this definition, only N consecutive samples of the signal are used starting 

at k = kO. The series X(n) is periodical in n with a period of N. The integer 

variable n represents discrete frequencies. For example n = 0 is the DC 

component and n = N/2 is the folding frequency, i.e. half of the sampling rate. 

The inverse transform is given by: 

x(k) 
N/2 - 1 

(l/N) E X(n) exp(j21rIlk/N) 
n=-N/2 

(2) 
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with k - kO, ... , kO + N - 1 

Eq. (1) is referred to as the analysis of the signal, whereas eq. (2) is used to 

synthesi~e the signal from its Fourier Transform. From the complex numbers 

X(n) two real sequences are obtained. The magnitude X(n) plotted as a function 

of n is the magnitude spectrum. The argument arg[X(n)] is the phase spectrum. 

They inform on the frequency distributions of complex exponential signals 

composing the analysed signal x(k). If the number of samples N is small 

compared to the total length of the signal, these spectra are called short term 

spectra. On a long signal, such as a speech signal, several short term spectra 

can be computed. Sections of the signal used in these computations may 

partially overlap or may be apart. If these spectra are plotted in three 

dimensions as a function of the frequency n and of the time (for example time 

instants corrresponding to the beginning of each signal section), the resulting 

surface is called spectrogram. It is usually represented as a black-and-white two 

level image on the (n,k) plane. Additional grey levels, if available, give more 

precise and detailed information on the frequency variations of various components 

of the signal. In section 1.6 fast algorithms for computing spectrograms will be 

discussed. 

2.2 CORRELATION FUNCTIONS 

The similarity of two signals x(k) and y(k) is measured by their cross 

correlation function defined by: 

rp (k) = 
xy 

+00 
E x(l) y(k+l) 

1=-00 
(3) 

For a given delay k of the second signal y(k) with respect to the first signal 

x(k), the cross correlation function is just the integral of the product of these two 

signals. It reaches its maximum value for the greatest similarity. If x(k) is 

identical to y(k), the cross correlation function is called autocorrelation function. 

It is given by: 
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+00 
tp (k) = 

x 
E x(l) x(k+l) (4) 

1=-00 

Its maximum is at the origin k = O. If this function is normalized by dividing 

it by the variance of the signal x(k), the result is called correlation coefficient. 

Its values lie between +1 and -1. 

An equivalent way of computing correlation functions is obtained by taking 

the discrete Fourier transform of both side of eq. (3) or eq. (4). One obtains 

respectively; 

and 

<I> (n) 
xy 

X*(n) Yen) 

* 2 <I> (n) = X (n) X(n) = IX(n) I 
x 

(5) 

(6) 

These results can be proved easily. They are left as exercises to the reader. 

2.3 THE I TRANSFORM 

The discrete Fourier transform is a very powerful tool for analysing and 

synthesizing signals. It is not, however, suitable for studying signal processing 

systems. A more general transformation is needed. The z transform fulfils this 

need and becomes identical to Fourier transform in a particular case. The z 

transform of a signal is defined by: 

X(z) 
+00 -k E x(k) z (7) 

k=-oo 

where z is a complex variable. A power series, such as this one, may not 

converge for all the possible values of l',. The area of the complex plane z 

containing all the values for which eq. (7) converges is called convergence region. 
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The inverse transform is 8 complex integral given by: 

,t k-l 
x(k) - (l/bj) "I X(I) I dl (8) 

The integration contour must lie in the convergence region. Usually, the 

inverse z transform is computed by using partial fraction decomposition in which 

the inverse transform of each term is known. Since this transformation is linear, 

the sum of these partial signals gives the desired result. 

It is interesting to note that if the I transform is computed on the unit 

circle of the z plane, i.e. for Izl= 1, the result is the continuous Fourier 

transform: 

+00 
X(z) I = X(f) = E x(k) exp(-j2",kf) 

Izl=1 k=-oo 

If now, the continuous variable f is replaced by a discrete variable n with 

f = n~f .... n/N, or equivalently, if the z transform is computed on equally 
n 

spaced points of the unit circle, the result is the discrete Fourier transform (1). 

2.4: CONVOLUTION 

(9) 

Let us consider a signal processing system S which acts on the input signal 

x(k) to produce an output signal y(k): 

y(k) .... S[x(k)] (10) 

If it is required from the system to be linear, the superposition principle is 

satisfied, i.e.: 

(11) 

An additional constraint may be required to be shift invariant. In this case, 

if the response to x(k) is y(k), the response to x(k-kO) is y(k-kO). Linear shift 

invariant systems are completely specified with their response to a unit sample, 

i.e. by their impulse response g(k). To see this, let us write the input signal in 
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terms of unit samples: 

+00 
x(k) - E x(l) d(k-l) 

1=-00 

where d(k) is the unit sample having the value 1 at the origin k-O and 0 

elsewhere. Using eq. (12) as the input signal, we have: 

y(k) = S[x(k)] 
+00 
E x(l) S[d(k-l)] 

1=-00 
+00 

(12) 

E x(l) g(k-l] = x(k) • g(k) (13) 
1=-00 

where g(k) is the response of the system to d(k). Eq. 13 is called convolution 

product or convolution. Notice the similarity between correlation and convolution. 

By taking the Discrete Fourier transform of both sides of eq. (13) a simpler 

form is obtained: 

Yen) = X(n) G(n) 

where G(n) is the frequency response of the system or the discrete Fourier 

transform of its impulse response. 

(14) 

A similar result is obtained by taking the z transform of both sides of eq. 

(13): 

Y(z) = X(z) G(z) (15) 

where G(z) is the transfer function of the system. 
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2.5 LINEAR FILTERS 

A linear shift invariant system with an impulse response g(k) is a filter. 

This terminology results directly from eq. (14). Since X(n) and the frequency 

response G(n) are simply multiplied, the selection of a particular function G(n) 

may attenuate or amplify some frequency components of the input signal to the 

detriment of others. For example, if G(n) is zero beyond a certain value of n, 

the output signal will not have any components at these frequencies. These 

components are filtered by the system. 

Digital filters are divided into two broad classes depending on their impulse 

response. If the length of the impulse response is finite, i.e. if g(k) has only a 

finite number of non zero samples, the filter is called Finite Impulse Response 

(Fm) filter. In contrast, if the length of the impulse response is infinite, the 

filter is called Infinite Impulse Response (Jm) filter. 

There are three equinlent ways of implementing a digital filter: 1) By 

convolution, using eq. (13) with finite number of samples. 2) By discrete 

Fourier transform, using eq. (14) and then taking the inverse transform of Yen). 

3) By using a difference equation of the following type 

N M 
E a(n) y(k-n) = E b(m) x(k-m} (16) 

n=O m=O 

Eq. (16) seems to come out of the blue, but it is not. It is simply the inverse z 

transform of eq. (15) where the transfer function G(z) is a quotient of the 

polynomials in z, Le .. : 

M 
E b(m) 

-m 
z 

G(z) = m~;..;;..o __ _ 

E a(n) 
n=O 

-n 
z 

(17) 
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Almost every transfer function can be written in this form. The rare cases 

where this is not possible, an approximation in the form of eq. (17) can be 

established by choosing N and M large enough. Fffi filters are usually 

implemented using the convolution eq. (13). It is a simple form which can be 

analyzed easily. In contrast IIR filters are more suitable for a difference 

equation. In this case some cares must be taken. In particular, if the dynamic 

range of the input signal is bounded, it is desirable for the dynamic range of the 

output signal to be also bounded. Filters of this type are stable filters. 

Unstable filters do not produce any useful output, because the output signal 

diverges continuously. 

So far, the filters that are described were shift invariant. Their 

characteristics (impulse response or frequency response or the coefficients of the 

difference equation) do not vary in time. These filters are convenient for 

processing stationary signals, i.e. signals whose statistical characteristics do not 

vary in time also. For nonstationary signals, however, such as the speech signal, 

it might be desirable to vary the characteristics of the filters. In this case, these 

filters are called time varying or adaptive. Rules must be established, of course, 

to find the new characteristics. Often, these rules are derived from the input 

signal itself, after detecting changes in its characteristics. 

The main problem in filtering is to find samples of the desired impulse 

response or the coefficients of the differences equation in accordance with the 

filtering requirements. Methods for designing FIR and 1m filters are quite 

different. They have been investigated quite extensively over the last two 

decades. Because of their variety and the complexity of some of them, they will 

not be discussed in this text. The reader may consult [IJ or [3] for detailed 

discussion of the subject. Presently, research efforts in digital filtering are rather 

oriented into implementation technologies such as VLSI and into multi-dimensional 

filtering. A brief discussion is included herein to emphasize basic problems related 

to the design and to the structures of digital filters. 
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When filtering is required, the frequency response of the desired filter is 

orten a binary function: all the components within a frequency band should be 

completely attenuated and others in a different band should not be modified at 

all. Accordingly, the frequency response is a binary function switching between 0 

and 1 on each cutoff frequency. These responses are impossible to match in 

practice. That is why they are called ideal frequency responses or ideal filters. 

Implementable filters can only approximate this behaviour according to an error 

criterion. Fig. 1 indicates major ideal frequency responses. In Fig. 2 tolerances 

G (f) 
Low Pass 

I 

-1/2 -Ie o Ie 1/2 

G (f) High Pass 

I . 
-1/2 -Ie 0 1/2 

G (n Band Pass 

r-- r--

I 
-1/2 -Ie 2 -/el 0 leI le2 1/2 

G (f) Stop Band 

1 

I 
- ,., - ,., 1/~ fe2 -leI o lei le2 1/_ 

Fig. 1 Ideal frequency responses 

are shown for a high pass fIlter. Instead of an ideal constant 1 in the passing 

band, oscillations within a band whose width is controlled by the parameter 62 
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-12 -/1 o 

1 - 02 

Stopped 
Band 
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Fig. 2 Tolerance bands for a high pass filter 

/ 

1/2 

are tolerated. Similarly, in the stopped band, other oscillations are tolerated as 

regulated with the parameter 1\. Finally, the transition between these two bands 

cannot occur at a unique frequency fe, but over a small frequency interval 

controlled with f1 and f2. Algorithms are then designed to find the impulse 

response or the transfer function of an implementable filter whose frequency 

response falls within this tolerance band. 

Fig. 3 shows the block diagram of an FIR filter. This structure is quite 

simple and may conveniently be used with a variety of technologies (surface 

acoustic waves, switched capacitor circuits, charge coupled devices and VLSI). If 

a similar effort is produced to draw a block diagram for a difference equation, a 

structure is obtained as shown in Fig. 4a. This structure is not efficient because 

of the redundant number of delay elements. With a little algebra on the 

difference equation, it is possible to show that this structure is equivalent to that 

shown in Fig. 4b in which the number of delay elements is minimized. The big 

disadvantage of this last structure is its sensitivity to finite arithmetic. In fact, 

all the coefficients a(n) and b(m) and the signal samples must be quantized at a 

finite number of levels. Quantization error on one coefficient influence the entire 

frequency response and may unstabilize a stable filter. For this reason, especially 

when the number of quantization levels are not too large, this structure is divided 
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y(k) 

Fig. 3 Implementation structure for a transversal FIR filter 

ao = I 

~ bM I -aN ;-1 ·W ~ + X 

Fig. 4 Implementation structure for a reeunin IIR filter. (a) structure 

as derived directly from a difference equation. (b) one equivalent 

canonical form. 

into the cascade of first and second order sections. 
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2.8 FAST TRANSFORMATIONS 

2.8.1 PRELIM1NARY COMMENTS 

Fast transformations play an increasingly important role in signal analysis, 

synthesis and coding. Since the reinvention of the fast Fourier transform in 1985, 

a number of complex methods that have not been used because of their 

computational cost, find increasingly wide applications and helped to solve various 

signal processing problems. With continuous progress in technology, a one-chip 

fast transform will soon find its socket in commonly used equipments. 

What is meant by fast transformation is an algorithm which computes a 

linear transformation by using a minimum number of multiplications and 

additions. For example all the so-called fast Fourier transforms (FFT) compute 

the discrete Fourier transform given by eq. (I). Other linear transformations can 

also be computed with fast algorithms. 

2.8.2 LINEAR TRANSFORMATIONS 

A linear transformation of size N, transforms N samples of a signal into a 

set of N transform coefficients, each of them being a linear combination of the 

signal samples. From a mathematical point of view, a linear transformation can 

be expressed as: 

X(n) 

with n 0, ... , N-I 

N-I 
E a(n,k) x(k) 

k=O 
(18) 
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where x(k) are the signal samples, a(n,k) the kernel of the transformation and 

X(n) the transformed coefficients. By comparing this equation with eq. (1), it can 

be shown that the discrete Fourier transform is a particular case of eq. (18) with 

a(n,k) = exp(j2111lk/N). 

In order to compute each transformed coefficient independently from the 

others, the kernel a(n,k) is required to have othogonal or orthonormal rows, i.e.: 

N-I {I if n = m E a(n,k)a*(m,k) = o(n,m) = 
k=O 0 otherwise 

(19) 

where * represents the complex conjugate and o(n,m) the Kronecker symbol. If 

X and x denote the coefficient and sample vectors respectively with: 

and 

T 
X = (X(O), XCI), ... , X(N-I» 

T 
x = (x(O), xCI), ... , x(N-I)) 

Eq. (18) can be written as matrix vector product: 

(20) 

(21) 

X = A x (22) 

where A is the matrix containing all the a(n,k). To recover the signal samples 

from the transform coefficients, A is required to be inversible. In this case, the 

following equation holds: 

(23) 

where I is the unit matrix. The matrix form of eq. (19) is: 

(24) 

h H t H ·t· t S· A .. h AH A-I were represen s erml Ian ranspose. mce IS umque, we ave = 

and hence: 

(25) 
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If this last equation is written in series form, one obtains: 

N-l 
L a(n,k) a*(n,l) = o(k,l) 

n=O 

{
I if n = m 

o otherwise 
(26) 

This equation implies that the columns of A are orthonormal too. A matrix 

A for which eqs. (19) and (26) hold, is called unitary. The transformation (18) is 

then a change in the N dimensional coordinate system in which x and X are 

expresed as vectors. 

2.6.3 FAST ALGORITHMS 

If the number of multiplications and additions required by a linear 

transformation such as (18) is counted, it is found to be Nc = N.N =N2. Then, 

how this number can be reduced to a more or less theoretical minimum! In 

general, this number is the minimum, unless there is some redundancy in the 

kernel so that some entries can be computed as functions of the others. Fast 

transform algorithms exist only for those transform matrices which have a 

structured redundancy. The discrete Fourier transform is one example. 

Two classes of fast algorithms can be established based on the factorization 

of the number of samples N. In the first class, a repetitive basic structure in 

the algorithm, and hence in the corresponding hardware, can be found if N is an 

integer power of a small number such as N = 2m, or N = am. These 

algorithms are more suitable for VLSI implementations. In the second class, 

algorithms are designed for N factorized as a product of a series of varioUs 

integer numbers such as N = Nl.N2.N3 .... Nk. In this case the basic structure 

exists but changes its size according to the particular Nj in the factorization. 

To see how a structured redundancy can be introduced in a transform 

matrix, let us consider the successive tensorial product of a set of p by p basic 

matrices Bi. We have: 
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n-I 
A = H Bi ® Bn-2 ® ... ® BO 

n i=O 

where x represents the tensorial product defined by C = A ® B: 

A= 

C= 

(all 
a21 

a12) 
a22 

B = (bll 
b21 

b12) 
b22 

allbll allbl2 al2bll al2bl2 

allb21 allb22 al2b21 al2b22 

a21bll a21bl2 a22bll a22b12 

a21b21 a21b22 a22b21 a22b22 

The matrix A is of size p by p with only np non redundant entries. It 
n 

can be shown [IJ that A obtained with successive tensorial products can be 
n 

factored into n matrices Cj, each of size p by p and having only p non zero 

entries per line. This result is known as Good's theorem and is expressed by: 

n-I 

(27) 

(28) 

A = IT Cj = Cn-l.Cn-2 ... CO (29) 
n 

j=O 

Eqs. (27) and (29) can be illustrated with the following example with 

n = p = 2. 

r'O.o :1.0.} [:0.0.0 :0.0.1] 
A2 -= 

b 
1,1,0 1,1,1 0,1,1 0,1,1 

b 
1,0,0 

b 
1,0,1 

0 0 b 
0,0,0 

b 
0,0,1 

0 0 

0 0 b 
1,0,0 

b 
1,0,1 

0 0 b b 
0,0,0 0,0,1 - b 

1,1,0 
b 

1,1,1 
0 0 b 

0,1,0 
b 
0,1,1 

0 0 

0 0 b 
1,1,0 

b 
1,1,1 

0 0 b 
0,1,0 

b 
0,1,1 

A transformation using A as the transform matrix can be written as: 
'I 

(30) 

where the products should be carried out from right to left. A flow chart can 

be derived from eq. (31) which can be used to design various fast algorithms. 

Fig. 5 shows the chart of eq. (31). A basic structure is used twice. It is 
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X(O) b b 
1,0,0 1,0,1 

0 0 b b 
0,0,0 0,0,1 

0 0 x(O) 

X(l) 0 0 b b 
1,0,0 1,0,1 

0 0 b b 
0,0,0 0,0,1 

x(l) 

X(2) b 
1,1,0 

b 
1,1,1 

0 0 b b 
0,1,0 0,1,1 

0 0 x(2) (31) 

X(3) 0 0 b b 
1,1,0 1,1,1 

0 0 b b 
0,1,0 0,1,1 

x(3) 

XIO 

x(O)=XOO X20=X(O) 

x(l)=XOI xiI =X(\) 

x (2) = X02 

x (3) = X03 xi3=X(3) 

2 

Fig. 5 Flow chart for a fast transform algorithm according to eq. (29). 

possible to modify the flow charts provided that the information flow is not 

altered. For example, if the 2nd and 3rd lines of the rightmost matrix in (31) 

are swapped, the 2nd and the 3rd columns of the second matrix should also be 

permuted to keep the result unchanged. The corresponding flow chart is shown 

in Fig. 6. The basic structure of this flow chart is known as the butterfly 

operation which allows 'in-place' computation, i.e. the storage for input data is 

used for intermediary and final results. 

In this scheme, the total number of multiplications and additions is reduced 

to Nf = pNlog N if N is an integer power of p compared to Nc = N. For 

example, for N = 1024, which a very commonly used transform size, the saving 

is larger than a factor of 50 I 
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xio 
x (0) =Xoo X20 = X(O) 

X21=X(\) 

x (2) = X02 X22 = X(2) 

x(3)=X03 X23 = X(3) 

eta pes 2 

Fig. 6 Modified flow chart for 'in place computation'. 

2.8.4 PARTICULAR FAST TRANSFORMS 

Elaborating the general principles outlined in the previous paragraph, fast 

algorithms can be designed for the following particular transforms. Algorithms are 

not described due to the limited space of this text. 

1) The discrete Fourier transform 

Several fast algorithms exist for this transformation given by eq. (1). They 

are too specialized to be cited here. The reader may find details in [11 or [31. 

2) The Hadamard transform 

The Hadamard transform is perhaps the simplest transformation. Its 

transform matrix contains only +I's and -I's as entries. It is given by: 

X(,B) 
N-I 

(II';?) E (-1) 
a=O 

n-I 
E a(k),8(k) 

k=O 
x(a) (32) 
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The coefficients X(P) given by this equation are in the so-called natural 

order, as naturally given by the definition. They can be ordered in various ways 

such as bit-reversed order, sequency order or cal-sal order. Fast algorithms exist 

for each type ordering. A particular order is selected depending on the problem. 

For example, if even or odd symmetries are searched in the signal, cal-sal order is 

the appropriate ordering. If a parallel is made to the frequency as in Fourier 

transform, then sequency order should be used. 

3) The R transform 

This transformation is almost identical to Hadamard transform except that 

absolute values are taken after each substraction in the Hadamard transform flow 

chart. Because of this nonlinearity, this transform has no inverse. An interesting 

property of this transform is that the transform coefficients remain unchanged 

under cyclic translation of the input samples. 

4) The Haar transform 

A closed form analytical expression for this transform is cumbersome to 

write. The general form (18) remains valid here, where each a(k,n) are replaced 

by samples from the orthogonal set of Haar functions shown in Fig. 7. 

5) The sine transform 

The closed form analytical expression of the sine transform is the following: 

(33) 

A similar form can be used depending on the even or odd numbers involved. 

This transform, along with the cosine transform as defined below, are used often 

for speech coding. 
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• 

2 

.. 

• 

6 

7 

8 

Fig. 7 Orthonormal set of Haar functions. 

6) The cosine transform 

The cosine transform is defined by: 

N-l 
C(n) = E x(k) cos[~ (2k+l)n] 

k=O 
(34) 

Note that sine and cosine transforms are byproducts of the discrete Fourier 

transform. Because they require real coefficients, instead of complex exponentials 

used in Fourier series, they are faster to compute and hence more suitable for 

real-time applications. 
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7) Slant transform. 

As the Haar transform, the closed form analytical exprression for this 

transform is cumbersome to write. In this case a(n,k) are replaced by samples 

from the orthogonal set of slanted functions shown in Fig. 8. 

2.6.5 THE KARHUNEN LOEVE TRANSFORM 

Although there is no fast algorithm for this transformation, it is useful to 

describe it briefly because, in many cases, it is considered as the 'best' linear 

transform; best meaning whatever the reader thinks it means. The Karhunen 

Loeve transform, by definition, produces statistically uncorrelated coefficients, i.e. 

E[X(n)X*(m)] = >. o(n,m) 

" Substituting the general form (18) in (35), we have : 

E[X(n)X*(m)] = E[ })(n,k) x(k) })*(m,l)x*(l) ] 
k 1 

(35) 

= E E E[x(k)x*(l)J a(n,k) a*(m,l) = >'["Jo(n,m) (36) 
k 1 

The expectation E[x(k) x *(l)J is, by definition, the general entry of the 

correlation matrix rp (k,l) of the signal. Eq. (36) is then : 
x 

E E rp (k,l) a(n,k) a*(m,l) = >. o(n,m) 
k 1 x " 

Comparing this result to eq. (19), we have : 

E rp (k,1) a(n,k) = >. a(n,l) 
k x " 

(37) 

(38) 
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Fig. 8 O\honormal _ of functions 1I8ed in lhe slant transform. 
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In matrix notation, the equivalent form is 

tp A = ). A (39) 
x " 

which is the classical eigen-vector, eigen-value problem. The solution of eq. (39) 

gives the transform matrix which guarantees (35). To derive this transformation, 

the correlation matrix tp (k,l) of the signal must be estimated first. Then a 
x 

linear tranform requiring Ne = N2 operations should be computed. Because of 

this computational load, the Karhunen Loeve transform is not very often used in 

practice. It gives an indication about the upper bound of what other transform 

cited earlier, computationally more efficient, should attempt to reach for 

decorrelating data samples. 

2.7 LINEAR PREDICTION 

2.7.1 PRELlMlNARY REMARKS 

There are several ways to introduce the linear prediction. The one which 

will be discussed here is based on the convolution, the z transform and linear 

systems described previously. Let us consider a linear system and its associated 

equations: 

+00 

y(k) = x(k).g(k) E g(l) x(k-l) (40) 
- 00 

and 

Y(z) = X{z) G(z) (41) 
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along with the convergence region. 

The transfer function G(z) is then the ratio Y(z)/X(z). The roots of Y(z) is 

also the roots of G(z). In contrast, the roots of X(z) are the poles of G(z). The 

desired transfer function is often so idealized that various approximation forms are 

the followings : 

1) Polynomial approximation. 

In this case, the practical transfer function is given by 

G(z) 
M 

-i L: b(i) z 
i=O 

(42) 

Substituting this particular form in (41) and taking the inverse z transform 

of both side of this equation, we have 

y(k) 
M 
E b(i) x{k-i) 

i=O 
(43) 

which is nothing else than a particular form of the convolution (12) for Fffi 

filters or systems. Note that in this case, each output sample is a weighted sum 

of a finite number of past and present input samples. The system is entirely 

described by m coefficients b(i). This type of system is also called all zero 

system since the transfer function has M zeros. 

2) Inverse polynomial approximation 

In this case, the practical transfer function is given by 

N 
L: a(j) z-j 

G{z) 
1 

j=O 

It is possible to introduce a gain factor GO in (5) to replace the unity 

numerator. Substituting this particular form in (41) and taking the inverse z 

transform of both sides of this equation, we have : 

(44) 
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N 
y(k) .... - E a(j) y(k-j) + x(k) 

j=1 
(45) 

which is a particular form of the difference equation (16) for IIR filters or 

systems. Note that in this case. each output sample is a weighted sum of a 

finite number of past output samples and the present input sample. The system 

is entirely described by N coefficients a(j). These systems are also called all pole 

systems since the transfer function has N poles. 

3) Ratio of polynomials 

In the most general ease. the practical transfer function is a ratio of two 

polynomials in z-l. This is the case discussed in section 2.5 leading to the 

difference equation : 

N M 
y(k) E a(j) y(k-j) + E b(i) x(k-i) 

j=1 i=O 
assuming again a(O) = 1 

(46) 

In this most general case. the output sample is a weighted sum of the past 

output samples plus a weighted sum of the present and past input samples. It is 

a mixed. pole-zero system. 

In each of the preceeding approximations. the present output sample is 

expressed as a linear combination of past (and one present) samples. If the 

signal under investigation is associated to y(k). or equivalently if it can be viewed 

as the output of a known linear system (coefficients a(j)'s and b(i)'s known) 

whose input is a known signal x(k), eqs. (5), (6) or (7) can be used to predict 

the present sample of the output signal. Iterating these equations. the entire 

signal y(k) can be predicted. Since this prediction is done as a linear 

combination of other samples. it is called linear prediction. 

There are several possible framework to study in detail linear prediction such 

as covariance method, autocorrelation method, lattice structures, inverse filtering. 

spectral estimation, maximum likelihood method. dot product method, etc. 
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Mathematical developpments for each of them are quite simple. But each step of 

the computation offer a pletore of possible interpretations. This results in a very 

rich, precise, reliable and robust technique. 

2.7.2 LINEAR PREDICTION WITH ALL POLE SYSTEMS 

Linear prediction with all pole systems has the most widespread use because 

of the following general properties. 

Let y(k) denote the signal under investigation. If N past samples of this 

signal are used to predict its present value, we have 

y(k) 
N 
L a(i) y(k-i) 

i=l 

It is hoped that y(k) F:::$ y(k). The predicted signal y(k) is thus produced 

with a linear system excited by y(k) and whose transfer function is P(z) given 

by : 

N 
P(z) = L a(i) z-i 

i=l 

(47) 

(48) 

This ~result is obtained by just taking the z transform of both sides of eq. 

(47) and solving for the transfer function. 

The prediction error e(k) is simply the difference between y(k) and y(k) 

N 
e(k) = y(k) - y(k) = y(k) - L a(i) y(k-i) (49) 

i=l 

Again, by taking the z transform of both sides of this equation, we obtain 

the transfer function Q(z) of the linear system that produces the prediction error 

signal when excited with the signal y(k). We have 

Q(z) 
N 

-i 
1 - L a(i) z 

i=l 
1 - P(z) (50) 
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Let us assume now the hypothesis that the signal y(k) is produced according 

to a linear prediction model given by 

y(k) 
N 
E a(i) y(k-i) + GO x(k) 

i=1 

where the coefficients a(i)'s are not known. The transfer function H(z) of this 

production model is obtained by taking the z transform of both sides of eq. 

(51) : 

H(z) 
GO 
N . 

1 - E a(i) Z-l 

i=1 

If the signal y(k) is produced with eq. (51) and if a(i) 

= 1, ... ,N, then Q(z) is the inverse filter of H(z) 

H(z) 
GO 
Q(z) 

a(i) with 

(51) 

(52) 

(53) 

In other words, systems characterized by the transfer functions H(z) and Q(z) 

have opposite effects. The first one produces the signal y(k) from a signal GO 

x{k), whereas the second produces the prediction error e(k) = GO x(k) from the 

signal y(k). This discussion is illustrated in Fig. 9. In this context, the 

prediction problem consists in finding the set coefficients a(i) from y(k) in order 

to represent this signal in the best possible way - according to a criterion - by 

eq. (52). Since in this equation Q(z) is a denominator polynomial, we have an 

all pole system for H(z). 

2.7.3 COMPUTING THE PREDICTION COEFFICIENTS 

The prediction coefficients are obtained by minimizing the energy of the 

prediction error e(k). This energy is given by : 
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x(k) y(k) 
H(z) O(z) 

oc(i) a(i) 

Hypothesis Reality 

Fig. 9 mustrating the prediction model. 

Eq. (49) can be rewritten as : 

with a(O) = -1. 

N 
e(k) ..... - E a(i) y(k-i) 

i=O 

Substituting (55) in (54), we have : 

W == E E Ea(i) y(k-i) y(k-j) a(j) 
k i j 

Defining the quadratic form 

we have 

k2 

C(i,j) - E y(k-i) y(k-j) 
k=k1 

x(k) 

(54) 

(55) 

(57) 

(58) 



www.manaraa.com

29 

W = L La(i) C(i,j) a(j) 
i j 

Setting to zero all the derivaties of W with respect to a(i}'s 

N 
C(O,j) = L aO) C(i,j) 

i=l 

(59) 

(60) 

Particular cases are defined by constraining k1' k2 and y(k). For example, 

if C(i,j) is computed over an infinite interval (k1 = - 00 and k2 = + 00) and 

the signal y(k) is observed over a finite interal from k = 0 to k = N-1 (implicit 

rectangular window), the quadratic form C{i,j) becomes 

+ 00 + 00 

C{i,j) = L y(k-i) y(k-j) L y(k) y{k+li-j!) 
- 00 - 00 

+ 00 

= L y(k) y{k+li-j!) = !p (Ii-j!) 
y 

- 00 

In this case C{i,j) is the autocorrelation function and the method used to 

solve (60) for a(i}'s is called autocorrelation method. 

(61) 

If k1 = M where M is the order of the predictor to start the prediction 

with M initial conditions and k2 = N-1, C(i,j) behaves like a covariance matrix. 

The method using this case to solve (60) is called covariance method. 

Different polynomials Q(z) are obtained with different methods and analysis 

conditions. The autocorrelation method guarantees in theory the stability of H(z) 

given by (52) but requires a window on the signal which reduces the frequency 

resolution. On the other hand, the covariance method does not require any 

window, but does not guarantee the stability. The lattice method overcomes 

these problems, provides a quite general solution and guarantees the stability. 
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2.7.4 LATTICE METHOD [2] 

The lattice method is obtained by computing two predictions on the signal, 

one for the future (which will be denoted by + ) and one for the past (which 

will be denoted by -). Fig. 10 shows a signal x(k) and its samples to illustrate 

these predictions. Starting with the sample x(k-m) the future prediction is 

x(k) 

x(k·m-1) 

I I I 

I 
I 
I 
I 
I 
I 
I .. 

I 
I I 

m samples 

I 
I 

I 
I 
I 
I 

-I 

x(k) 

Fig. 10 llIustrating past and future predictions. 

computed according to 

m 

k 

xm+(k) == - E a(m,i) x(k-i) (62) 
i=1 

where m is a parameter taking the values 1, 2, ... , M. The prediction error is : 

m 
x + (k) = x(k) - x (k) = E a(m,i) x(k-i) 
m m+. 0 

1= 

with a(m,O) = 1. The past prediction is computed similarly : 

x (k) =-
m-

m 
E b(m,i) x(k-i) 

i=1 

(63) 

(64) 
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leading to the past prediction error : 

m 
x- = x(k-m-I) - t (k).... L b(m,i) x(k-i) 
m m-. 0 

1= 

(65) 

with b(m,m+l) = I. 

Note that in eq. (65) the error is computed at x(k - m - I) to have causal 

systems. The criterion used is the simultaneous minimization of the past and 

future prediction error energies, computed over the interval [kO,kl] 

kl 

W (m) = L 
+ k-k - 0 

with m = I, "., M 

Ix + (k)12 
m 

and 

kl 
\' - 2 W (m) = l.J Ix (k)1 

- k-k m -0 

The transfer functions of the future and past predictors (62) and (64) are 

given respectively by : 

m . m . 
\' -1 A (z) = w a(m,i) z 

m . 0 
1= 

and B (z) = L b(m,i) i 1 

m . 0 
1= 

(66) 

(67) 

It can be shown [2] that the simultaneous minimization of prediction error 

energies given by (66) leads the orthogonality of the polynomials A (z) and B (z) m m 

and {B (z), z-j} = 0 
m 

(68) 

where {.,.} represents the dot product. 

The lattice structure is obtained by establishing iteratively the form of the 

polynomials A (z) and B (z) for m = I,,,.,M using two initial conditions m m 
a(O,i) = b(O,i) = 1. Iterations are governed by : 

A (z) = A I(z) + k B I(z) m m- m m-
(69) 

and by : 
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B (z) 
m 

k 
m 
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and can be interpreted as partial correlation coefficient. 

(70) 

(71) 

Taking the z transform of both sides of (63) and (65), substituting in this 

result (69) and (70) and taking the inverse z transform, we obtain the equations 

of the lattice structure : 

Fig. 11 shows the lattice structure of a filter equivalent to the filter 

characterized by the transfer function Q(z) given by (50) and producing the 

prediction error e(k). Because of the modularity contained in it, this structure is 

very suitable for hardware implementations. 

2.8 HOMOMORPmC PROCESSING OF SIGNALS 

Homomorphic processing is a convenient tool to be used for processing signals 

combined by convolution or multiplication (modulation). Let us assume that the 

observed signal is given by z(k) = x(k) . y(k) or z(k) = x(k) • y(k) where x(k) is 

the signal to be recovered. Clearly, in these cases linear filtering theory cannot 

be used, independently from its well known and powerful techniques. Two 

approaches can be envisioned. The first one consists in developing special 

methods to solve these problems, whereas the second attempts to transform these 

problems into other problems already solved, for example by using linear system 

theory. The second approach seems to be easier to develop and to apply, 

because it benefits from the large amount of available results in linear system 
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theory. 

2.8.1 MULTIPLIED SIGNALS 

If the observed signal is of the form 

(73) 

where al and a2 are two arbitrary constants, the well known way to transform 

this signal into a weighted sum is the use of logarithm. The real logarithm may 

be too restrictive because it can be used only for strictly positive signals or for 

signals which have been previously rescaled with the addition of a constant value 

to render them positive. The complex logarithm, however, can be used for 

bipolar or complex signals. In polar coordinates, a complex signal x{k) can be 

written as : 

x(k) = Ix(k)lexp Uarg(x(k)] 

= expnnlx(k)1 + jargx{k)] (74) 

The complex logarithm, denoted by In[.], is then 

In [x(k)] = lnlx(k)I + jargx(k) (75) 

AB defined, the complex logarithm has an important disadvantage. It is not 

8 one-to-one transformation. Its argument is defined modul 211', i.e. adding 

multiples of 211' to the argument in (75) does not change the result. In other 

words, the phase is wrapped around the unit circle. To remove this ambiguity 

from the argument of the complex logarithm, all the arguments to be used need 

to be defined as continuous functions of x(k). With a continuous argument, the 

complex logarithm becomes a one-to-one transform. If ever, the former form of 

the argument is required, it is sufficient to compute it modulo 21('. Usually, what 

is given in the first place is the argument modulo 211'. There are several 
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algorithms to transform such an argument into a continuous function. This 

operation is known as phase unwrapping. Fig. 12 shows wrapped and unwrapped 

versions of an argument. 

arg[x(k)] 

311' 

11' 

i k 

o 1 1 

- 211' 

- 311' 

Arg [x (k)] 

11' 

k 

o 

Fig. 12 Wrapped and unwrapped phase curve. 

If the complex logarithm is now applied to the input signal x(k) given by 

eq. (73), the result is : 

x(k) = In[x(k)] = a1 In[x1 (k)] + a2 In[x2(k)] 

(76) 
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Notice that, now, the input signal x(k) is transformed into a signal x (k) 

which is a linear combination of other signals. Hence, according to the frequency 

content of Xl (k) and x2(k), linear filtering may be used to recover for example 

Xl (k) or x2(k) to the detriment of the other. Once the transformed version of 

the signal we are looking for is obtained, the signal itself is simply given by the 

inverse transform, i.e. : 

x(k) = exp[x(k)] (77) 

The results of this section show that with a nonlinear one-to-one 

transformation, it is possible to transpose a multiplicative combination of signals 

into an additive combination, a familiar situation in which linear system theory 

can be used. Fig. 13 shows the block diagram of a homomorphic system for 

multiplied signals. 

+ + + + 
x (k) Complex x(k) Linear )' (k) Complex y(k 

logarithm f---+- System ---.. Exponential 
In L exp 

Fig. 13 Block diagram for homomorphic processing of multiplied signals. 

As an example related to speech signals, let us consider the dynamic range 

handling. Whenever a speech signal changes its physical support, dynamic ranges 

on both supports should be measured and compared. Very often they are not 

compatible. It is therefore necessary to compress or expend the dynamic range 

before changing the recording media. The speech signal can be viewed as a low 

frequency envelope e(k) modulated with a high frequency carrier p(k). Hence, the 

input signal is : 

x(k) e(k) . p(k) (78) 
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Since e(k) is strictly positive, the complex logarithm leads to : 

i(k) = In e(k) + lnlp(k)I + j arg[p(k)] (79) 

A linear filter can be used to compress or to expand the dynamic range of 

e(k) as given by : 

y(k) = a In e(k) + b lnlp(k)I + jb arg[p(k)] (80) 

In practice, b = 1 because the carrier does not influence too much the 

dynamic range of e(k). If a is larger than 1, the dynamic range is expended. In 

contrast, if a is less than 1, the dynamic range is compressed. 

2.8.2 CONVOLVED SIGNALS 

In this case, the observed signal x(k) is the convolution of two signals x (k) 

and x (k), the former being the signal of interest. 

+ 00 

x(k) = E xI(I) x2(k-I) = xI(k) * x2(k) 
1= - 00 

(81) 

The problem is now to recover xI(k) from x(k). Remembering eq. (14), if 

the discrete Fourier transform is applied to both sides of eq. (81), the result is a 

simple product : 

(82) 

Notice that the use of the discrete Fourier transform for convolved signals, 

transform this problem into a problem that has just been solved, ie. the problem 

of multiplied signals. Since the discrete Fourier transform of a signal can be 

viewed as a complex signal, all that has to be done is to take the complex 

logarithm of both sides of eq. (82). We have: 

In [X(n)] = In [Xl (n)] + In [X2(n)] (83) 
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Now, the convolved input signal is transformed into a linearly combined 

signal for which the linear system theory may again be applied. Notice also 

that, in constrast with eq. (76), in this case signals are function of the frequency 

and not of the time. If a linear filter is to be used for eq. (83), it should be a 

filter whose impulse response is expressed in the frequency domain and its 

frequency response in the time domain. This is rather an uncomfortable situation 

in which it is not difficult to mix up time and frequency. To overcome this 

difficulty, the inverse Fourier transform of both sides of eq. (83) can be taken, 

leading to : 

-1 
x(k) = 1 In [X(n)] 

(84) 

which is now a time domain equation for linearly combined signals. Linear 

filtering can be applied to this equation to recover Xl (k) or x2(k). Then, to 

transform everything back to the original representation, a discrete Fourier 

transform should be computed first. Its result is then exponentiated and inverse 

Fourier transformed. Fig. 14 shows the block diagram of a homomorphic system 

for convolved signal. Notice that solving eq. (81) for Xl (k) is the inverse of 

convolution. This operation is commonly referred to as deconvolution. 

Homomorphic processing is one of the possible ways to deconvolve a signal. The 

inverse Fourier transform of the complex logarithm of the Fourier transform of a 

signal is called cepstrumj a word obtained by scrambling the letters of the word 

spectrum. It finds a rather large number of applications in speech processing 

such as echo removal, pitch detection, speech parameters estimation and 

restoration. 
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* + 
r-- -----------, 
I * + + + I 

x(k) I 

·1 I XU)·I I i(f~ I I 
I x(k) 

I F Qn F-1 I II 

I I 
I I L _____ .!.* ______ ..J 
+ * ,-------------, 
I + + + * I 

_\-(k-)--+i--l.~1 F I Yif~ I "P I Yif~1 F-'It-_+-: _-II'II~(k) 
I -I I L _____ ::.. _____ -.J 

Fig. 14 Block diagram for homomorphic processing of convolved signals. 

2.8.3 MAJOR APPLICATIONS OF THE CEPSTRUM 

In this section three major applications of the cepstrum are given. 

As a first case, let us consider a recorded signal x(k) resulting from several 

eehos of the same initial signal xl (k) : 

M 
x(k) = xl(k) + .r: a(i) xl(k-ki) 

1=1 

where a(i)'s are different attenuation factors and ki's the corresponding delays, 

Eq. (85) can be viewed as the convolution of the signal xl (k) given by : 

M 
x2(k) = d(k) + r: a(i) d(k-ki) 

i=l 

(85) 

(86) 
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where d(k) is the unit sample. For simplicity, let us consider one echo only, i.e. 

M = 1. The discrete Fourier transform of (86) is : 

(87) 

Taking the complex logarithm, we have : 

(88) 

This function is periodical of period l/kr Accordingly, the cepstrum x2(k) 

will be nonzero only for integer multiples of kl . In the cepstrum of the recorded 

signal, the non zero values of x2(k) will appear as peaks. To surpress the echo, 

these peaks should be eliminated. This can be done with a comb filter applied 

to the cepstrum x(k) which recovers only the contribution of Xl (k). The inverse 

transform gives the original signal without any echo. Fig. 15 shows various 

functions involved in filtering the cepstrum for echo removal. 
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The second application of the cepstrum is its use in pitch detection and 

speech parametres estimation. A voiced portion of a speech signal can be 

modeled as shown in Fig. 16. The excitation signal e(k) containing a pulse train 

is filtered with a time-varying filter whose impulse response is h(k). A prefilter is 

also introduced to better represent vocal cords. Its impulse response is denoted 

by g(k). Accordingly, the produced speech s(k) is given by : 

s(k) = e(k) • g(k) • h(k) (89) 

over a short period of time (10-30 ms). To avoid discontinuities at the ends of 

each speech segment, a window function w(k) is introduced, producing the 

windowed speech x(k) : 

x(k) = s(k) . w(k) 

= [e(k).g(k).h(k)Jw(k) (90) 

Assuming that the window w(k) is smooth enough over the variation of g(k) 

• h(k), we have : 

with 

x(k) == e (k).g(k).h(k) 
w 

e (k) == e(k) . w(k) 
w 

If the pitch period is ko, then : 

M-1 
ew(k) == E w(mkO) d(k-mkO) 

m=O 

(91) 

(92) 

where M is the number of pulses seen through the window. The discrete Fourier 

transform of eq. (92) is given by : 

M-1 
Ew(n) - E w(mkO) exp(-j2ftonmkO/N) 

m=O 
(93) 
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x(k) 

k 

g(k) 

- ....--

k 

-3k - 2kl -kl 0 k 2k 3k 

Xl (k)=x(k)g(k) 

k 

o 

Fig. 15 Echo removal by deconvolution 
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This function is periodical with a period of l/kO. The Fourier transform of 

the cepstrum e(k) will also be periodical with the same period, since the 

logarithm is a memoryless monotonic function. Accordingly, the cepstrum e(k) 

will be non zero only at integer multiples of kO. On the other hand, the 

duration of the composite impulse response g(k) • h(k) does not exceed a few 

dozens of milli seconds. In the cepstral domain, the contribution of this 

composite impulse response is non negligible only over a short time interval 

around the origin. A high-pass time filter applied to the cepstrum will isolate 

e(k), whereas a low-pass time filter recovers the composite impulse response g(k) • 

h(k). Fig. 17 illustrates, on a voiced speech section, various steps of this 

procedure. 

The last application which will be described here concerns the restoration of 

old recordings. If s(k) denotes a speech signal or a song produced by an artist, 

its recorded version can be modeled as a convolution 

x(k) = s(k)*g(k) (94) 

where g(k) is the impulse response of the recording system. The only assumption 

of this method is that the length of the impulse response g(k) is much shorter 

than that of the signal s(k). If the recording is done with old equipment and if 

there is no way to repeat the recording with modern equipment, it is necessary 

to recover s(k) to avoid the effects of the recording system contained in g(k). In 

general s(k) is a nonstationary signal which excludes the use of classical filtering 

techniques. Homomorphic deconvolution can be applied in this case also. Taking 

the complex logarithm of the Fourier transform of both sides of (94) leads to 

In[X(n)] = In[S(n)] + In[G(n)] (95) 

The difficulty of this problem is that not only s(k) is not known but also 

g(k), and hence G(n). A possible way to estimate G(n) is the use of eq. (95) for 

several, uncorrelated recordings, so that after averaging the right side of eq. (95) 

will converge to G(n). The problem is that it is difficult, if not impossible, to 

find a large number of old recordings recorded with the same equipment under 
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Fig. 17 Pitch period and parameter estimation 
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comparable conditions. This problem can be overcome if the recording x(k) is 

divided into several segments x.(k) of moderate length, a few seconds for example, 
1 

longer than that of the impulse response g(k). Since each of these sections 

contains different s(k)'s, statistical filtering (averaging) may be applied. A given 

section x.(k) can be viewed as a windowed part of the signal x(k) , i.e. 
I 

x.(k) = w.(k) x(k) = w.(k)[s(k).g(k)] 
1 1 1 

Assuming that the window is smooth enough over g(k), we have : 

x.(k) = [w.(k)s(k)] • g(k) 
1 1 

= s.(k).g(k) 
I 

The complex logarithm of the Fourier transform of both sides of eq. (97) 

leads to : 

lnrx:(n)] = In[S.(n)] + In[G(n)] 
1 1 

(96) 

(97) 

(98) 

If M denotes the number of section x.(k) in x(k), the average of both sides 
1 

of eq. (98) gives : 

M M 
(11M) E InlX·(n)] -= (11M) E pn[S.(n)] + In[G(n)]] 

i=l 1 i=l 1 

(99) 

The first term in the right hand side of eq. (99) is the estimate of the 

logarithmic power spectrum of s(k). It can be estimated by using a contemporary 

recording of the same song or speech recorded with modern equipment. For these 

systems G(n) is flat over a wide frequency range and equal to 1. So, if eq. (99) 

is used for a new recording, In[G(n)] is zero and hence : 

1 M 
M E In[s.(n)] = In[s(n)] (100) 

i=l I 

Substituting this in eq. (99) and solving with respect to G(n), we have : 

M 
In[G(n)] = (11M) E InlX.(n)] - In [S(n)] 

i=l 1 

(101) 
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Since the logarithm used is complex, eq. (101) should be written for the 

magnitude and for the phase. Neglecting the phase as a first approximation, we 

have: 

M 
InIG(n)1 = (11M) E InIX.(n)1 - InIS(n)1 

i=l 1 

(102) 

The deconvolution is then obtained with a filter whose frequency response is 

the inverse of G(n), i.e. : 

IG (n)1 = 1/IG(n)1 
r 

(103) 

The phase of G (n) can either be obtained with the Hilbert transform or be 
r 

neglected. Stokham used this method to restore old recodings from E. Caruso 

done in 1907 and obtained spectacularly good results [4J. 

To conclude this paragraph, notice that all the applications of the cepstrum 

are related to the deconvolution problem. The same ideas are also used for two 

dimensional signals, i.e. digital images. 

3. SPEECH ANALYSIS-SYNTHESIS 

In this section, we present principles and models of speech analysis and 

synthesis and show the use of signal processing methods in this context. Mter 

recalling the fundamentals of the speech signal, the principle of speech 

analysis-synthesis and speech short-time processing, we treat speech analysis and 

synthesis in two main sections. The first of them, spectral analysis, explores 

spectral envelope analysis and synthesis in the various speech synthesis models. 

The second is dedicated to pitch detection and pitch period measurement. 
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3.1 SPEECH SIGNAL 

The speech signal is modeled after the speech production mechanism. 

3.1.1 SPEECH PRODUCTION 

Major elements of the vocal apparatus are: the lung, the larynx and the 

vocal tract: 

a) The lung is the source of energy in form of air under pressure. 

b) The larynx consists of three cartilages supporting the vocal cords which is an 

opening of variable size through which air from the lung flows. Voiced 

sounds are produced by adjusting the vocal cords in a way that they vibrate 

and modulate the air flow. Unvoiced sounds are produced by keeping the 

vocal cords open. 

c) The vocal tract consists of: 1) the pharynx and oral tract which together 

from a tube, 17 to 20 cm in length, whose cross section varies with jaw, 

tongue and lips position; and 2) the nasal tract, 12 cm in length and of 

fixed cross section, which lies in parallel with the oral tract and is made 

active or inactive by displacing the velum. 

Speech is the product of an original excitation, later modified by the vocal 

tract. 

A first type of excitation, responsible for producing voiced sounds, is the 

airflow modulation produced by vibrating vocal cords. The excitation signal is 

periodic (pitch) and its spectrum displays harmonics whose power spectrum 

decreases with an average of 12 dB/octave. 

A second type of excitation, responsible for producing unvoiced sounds, is the 

air turbulence provoked by a constriction somewhere in the vocal tract. The 

signal has noise characteristics. 
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The vocal tract acts as a resonator and modifies the excitation signal. For 

voiced sounds, the vocal tract usually shows 4 resonances which are called 

formants and which characterize the sound. Fig. 10 shows a typical spectrum of 

a voiced sound where both the periodic excitation spectrum and the formants are 

visible. When the nasal tract is also active then the overall transfer function 

also includes zeros call antiformants. 

3.1.2 SPEECH MODEL 

All speech production models have in common the separation of excitation 

features, which are accounted for by two pulse train generators and resonator 

features, which are accounted for by a time-varying linear system. Thus speech 

production is modeled after Fig. 18. 

3.1.3 SPEECH ANALYSIS AND SYNTHESIS 

The basic schema of a vocoder is given in Fig. 19. There are four main 

functions. The analysis functions are: detection and measurement of the pitch 

of fundamental frequency F , and analysis of the spectral envelope. The two 
o 

synthesis functions are: generation of the excitation and restitution of the 

spectral envelope. Next sections will describe this function more in detail. 

However, compression of the data flow between analyser and synthesiser is not 

described further. 
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Fig. 19 Main functions of speech analysis and synthesis 

3.1.4 SHORT-TIME SPEECH ANALYSIS 

~..o/.I.J~,ETIC 
SPEECH 

The properties of the speech signal change relatively slowly with time. This 

leads to short-time processing methods in which speech segments called frames are 

isolated and processed as if they had fixed properties. Such segments can be 

isolated by multiplication with a window sequence w(k) positioned at a location 

k = t. Windowing the speech signal x(k) using the time-domain window w(k) 

leads to the analysis sequence: 

xlk) = x(k) . w(l-k) (104) 

Two examples of short-time parameters are given. The short-time average 

magnitude is defiend by : 

M(l) 
l+N-l 
E x(k). w(t-k) 

k=t 

The short-time average zero-crossing rate is defined by 

(105) 
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l+N-1 
Z(k) == E c(k) . w(l-k) 

k=l 

if sign(x(k)) =/0 sign(x(k-1)) 

else 

3.2 SPECTRAL ANALYSIS-SYNTHESIS 

(106) 

We describe here the analysis and restitution of the spectral envelope. The 

various interpretations of short-time Fourier analysis are given and three voeoders 

are described. 

3.2.1 SHORT-TIME FOURIER ANALYSIS 

Three interpretations of the short-time Fourier transform are given. First it 

is defined as the normal Fourier transform of a sequence which is limited in time. 

Using the window sequence w(k) which is 0 outside the significant range 

k = LN, we find, using the definition of eq. (1), the short-time Fourier 

transform in its discrete form: 

l+N-l 
Xin) = E w(l-k) . x(k) . exp(-j21rkn/N) 

k=l 

with: n = -N/2, ... , N/2-1 

(107) 

where N is the maximum width of the window sequence w(k). Note that it is a 

function of both the discrete frequency n and the position l of the window. A 

first interpretation of X (n) is as follows. Eq. (107) can be seen as the DFT of 

a sequence w{l-k) . x(k) which itself, according to eq. (104) is the x(k) sequence 

observed through a window with impulse response w(k) displaced at position i. 
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The second interpretation derives directly from eq. (107) by considering it as 

the convolution defined in eq. (3). 

Xe(n) = [x(k) . exp(-j21rkn/N)] ... w(k) (108) 

We thus obtain Xin) by cascading a modulation of x(k) by exp(-j21rkn/N) and a 

filter with impulse response w(k). 

To catch the third meaning of Xin), we transform the equation above into 

the equivalent form: 

e+N-I 
Xin) = exp(-j21rkn/N) E x(e-k) . w(k) . exp(j21rkn/N) (109) 

k=e 

which interprets as the result of modulating (exp(-j21rkn/N)) the output of a 

complex bandpass filter whose impulse response is w(k) exp(j21rkn/N). The 

practical consequence of this interpretation is that Xe(n) can be obtained by 

filtering x(k) with a bandpass filter followed by a modulator. Moreover, in 

vocoders we are satisfied with the amplitude of the complex value Xin). Using 

equation above, we find : 

e+N-I 
IXin) I = I E x(l-k) . w(k) . exp(j21rkn/N)I 

k=e 
(110) 

which now has the following interpretation: 1Xin) I is obtained by cascading a 

bandpass filter with impulse response w(k)exp(j21rkn/N) and a RMS circuit. Also, 

it can be shown that an equivalent result is obtained if an envelope detector is 

used instead of the RMS circuit. 

As a way to compare the interpretations given, we emphasize the respective 

role of the window in each form. It appears as a simple window function w(l-k) 

first, then as (low-pass) impulse response w(k) and finally as (bandpass) impulse 

response w(k)exp(j21rkn/N). 
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3.2.2 ANALYSIS AND SYNTHESIS METHODS 

Spectral analysis is the transform of eq. (107). .AB shown right above, it can 

be realized either by linear filtering of x(k) according to eq. (110) or by FFT of 

w(l-k) . x(k). 

Spectral synthesis is given by the inverse DFT of X (n) according to eq. 2. 

Three synthesis methods are now shown. To each corresponds a particular 

vocoder structure. 

3.2.3 CHANNEL VOCODER 

Principally, the speech spectrum is divided by a number of continguous 

bandpasses at the input and reconstructed by addition at the output. A channel 

is affected to each bandpass. 

Practically, either a filter bank to implement digital filtering or FFT to 

implement DFT is being used both for analysis and synthesis. An other practical 

aspect is the division of the spectrum in several bands. Both uniform and 

non-uniform spectrum division is used. In the case of non-uniform spectrum 

division, the channel bandwidth increases with frequency (exponential law for 

instance) to account for the characteristics of the human ear. 

Fig. 20 shows the principle of a channel vocoder using filter banks both for 

analysis and synthesis. 
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3.2.4 FORMANT VOCODER 

Rather than dividing the spectrum enTelope in fIXed contiguous bandpasses, 

this approach characterizes the spectral envelope by more specific information like 

the position, the amplitude and width of the formants. A better speech quality 

or better compresion factor is expected by this more specific approach. 

Starting from a speech synthesis model which uses a cascade of digital 

resonators as a time-varying digital filter, the basic step is to find the model 

parameters fulfilling the following criteria: best match of the spectral envelope 

found by analysis, with the DFT of the system impulse response. For example, a 

system can use a 5 pole digital filter to account for voiced sounds and a 1 pole-l 

zero digital filter for unvoiced sounds. The variable filter parameters are the pole 

positions F I' F 2' F 3 for the voiced component and both the pole and zero 

position Fp and Fz for the unvoiced component. 

A first analysis method directly finds the first three maxima of the 

short-time spectrum by simple peak detection. Practically, a rather large number 

of channels (30 to 50) is required in order to obtain a high enough spectral 

resolution to make those maxima detectable. Note that some kind of smoothing 

must be applied to the spectrum in order to remove the periodic pitch structure. 

By one method call cepstral smoothing, the pitch signal is filtered out from the 

cepstrum x (k). 

A second, more simple analysis method divides the spectrum in three analysis 

channels by bandpass-filtering. The bandpasses are designed such as to capture 

each, one of the first formants F I' F 2' F 3 and also, they are selected 

broad-banded enough to allow a sufficiently large variation of formant position. 

Then, the exact formant position and power is obtained by measurement of both 

the average zero-crossing rate eq. (106) as well as the average power in each 

channel. 
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A third method, called analysis-by-synthesis, proceeds by successive 

approximation. The model parameter are varied as long as to get, at the output, 

a good approximation of the input function. 

Fig. 21 shows also an example of pole-zero locations for the two time-varying 

digital filters of the formant synthesizer. 

3.2.5 LINEAR PREDICTION VOCODER 

To remedy certain shortcomings encountered with the formant synthesizer, 

the filter model is now changed in that the cascade of second-order filters is 

replaced by a higher order linear system. The purpose of this system is to 

model together the excitation pulse shape, the vocal tract and other effects as 

well. The transfer function of the filter is of the form: 

H( z) = --:-M:-"I,--
-i 

I-Ea. z 
i=1 I 

(111) 

where M is the filter order, typical values being 10 or 12; and {a., i = 1 . M} 
I 

are the model parameter called the predictor coefficients. Their determination 

was shown in section 2.7.3. 

Fig. 22 illustrates the corresponding linear predictive (LPC) synthesizer. 

3.3 PITCH DETECTION AND PITCH PERIOD ESTIMATION 

The purpose of pitch analysis is to provide the two pitch dependant 

parameters of the model: excitation mode (voiced/unvoiced) and pitch period 

value. The corresponding analysis procedures are pitch detection respectively pitch 

period estimation. 
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Fig. 22 Linear prediction synthesizer 

SYNTHETIC 
SPEECH 

Both because the human ear is very sensitive to the pitch and because the 

pitch contributes much to the naturalness of speech, correct pitch analysis and 

restitution is decisive for the quality of synthesized speech. 

Pitch analysis methods are numerous and various and practical algorithms 

often combine seveal of them. For a comparison see for example [61 or [71. We 

restrict this presentation to the basic methods. Also, note that for most practical 

methods, the effective processing is preceded by preproeesing like normalization, 

low-pass filtering or clipping and followed by postprocessing like smoothing, 

correction etc. 

Pitch detection method can be divided in three categories: time-domain, 

frequency domain and hybrid methods. 
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3.3.1 TIME DOMAIN METHODS 

The basic idea is to preprocess the quasiperiodic speech signal such as to 

reduce sufficiently the formant structure and then to use simple time domain 

methods to estimate the pitch. 

3.3.1.1 ZERO CROSSING 

The principle is: low-pass filtering followed by zero-crossing (eq. 106) 

measurements. A particularity however is that the useful pitch and the filter 

cut-off frequency are related, with the practical consequence of a limited pitch 

frquency range for a given filter configuration. To remedy that, adaptive filtering 

as a function of F can be performed., 

3.3.1.2 PEAK AND VALLEY MEASUREMENTS 

The principel is: low-pass filtering followed by peak and valley detection 

and a final decision for the choice of the pitch. Practically, there are 6 parallel 

detectors: peak, valley, peak-to-valley, valley-to-peak, peak-to-previous-peak and 

valley-to-previous-vaIIey detectors. The decision is made to guarantee correct 

pitch measurement in the case of a signal with both fundamental and second 

harmonic. 
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3.3.1.3 AUTOCORRELATION FUNCTION 

This method uses the property of autocorrelation: the autocorrelation 

function of a periodic signal is periodic with the same period, i.e. it will show a 

peak at a lag value equal to the signal period. Further, the peak has same 

amplitude as the peak at the origin. For quasiperiodic signals, the peak is 

slightly reduced. 

Practically, a window (eq. 104) is applied to the speech signal and the 

autocorrelation function from eq. 4 is computed: 

l+N-l 
rp im) = E x(k) . w(l-k) . x(k+m) . w(l-k-m) 

k=l 

which can be computed directly or by FFT (see eq. 6). The lag value m 

corresponding to the first maximum of rp im) indicates the pitch period value. 

The performance of this method is significantly improved by a non-linear 

preprocessing called central clipping which sets small relative values to o. 

(112) 

Computation of the autocorrelation function can be simplified by quantizing 

the signal to the three levels +1, 0, -1. This eliminates all mUltiplications 

encountered with the normal computation of eq. 4 or 6. 

3.3.1.4: AVERAGE MAGNITUDE DIFFERENCE FUNCTION 

As the one just described, this method is a simple to implement approach to 

pitch detection. Compared to the autocorrelation function, it uses subtractions 

instead of multiplications. It takes advantage of the fact that for a periodic 

signal, x(k)-x(k+p) = 0 when p is a delay equal to one or several periods. The 

average magnitude difference function (AMDF) thus writes: 
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l+N-l 
AVDF(m) = E [x(k). w(l-k) - x(k+m) . w(l-k-m)] (113) 

k=l 

The detected pitch period is the lag value m for the first minimum of A VDF(m). 

3.3.2 SPECTRAL METHODS 

Frequency-domain pitch detectors use the property that, if the signal is 

periodic in time, then the frequency spectrum of the signal will consist of a series 

of impulses at the fundamental frequency and its harmonics. This harmonic 

structure, only present with voiced sounds, must be detected and the frequency 

interval between two lines must be measured. 

3.3.2.1 CEPSTRUM METHOD 

As we have seen, a basic step of the cepstrum computation is the 

logarithmic transform of the amplitudes in the spectral domain. The speech 

spectrum X(n) which is ~he product of the excitation spectrum E(n) and the vocal 

tract spectrum R(n) is thus transformed in the sum of two signals: 

InIE(n) . R(m)1 = InIE(n)I + InIR(n)1 (114) 

Mter inverse DFT we get the cepstrum x(k) which now, is the sum of the 

cepstra of e(k) resp. r(k): x(k) = e(k) + r(k). As the excitation e(k) is periodic, 

its cepstrum e(k) will display a strong peak, indicating the position of the pitch 

period, whereas the slow and aperiodic oscillation r(k) give raise to a much flatter 

curve. 
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Practical cepstral computation requires a good resolution in the spectral 

domain. Therefore difficulties arise for small values of F where the spectral 
o 

lines are close to each other. 

3.3.2.2 COMB FILTERING IN THE SPECTRAL DOMAIN 

The principle is to filter the short-time speech spectrum Xt(n) with a 

variable comb filter in the spectral domain. The comb filter is a function 

C(n,n ) where n is the interval between two teeth of the comb. The method 
o 0 

looks for the maximum of the cross-correlation when the teeth interval n is 
o 

varied. When this maximum is reached, the comb lies exactly on the harmonic 

lines of Xin), and thus: F 0 = no' This writes formally: 

N/2-1 
F 0 = ar~ax [ n~o Xin) . C(n,no)] (115) 

o 

3.3.3 HYBRID METHOD 

Hybrid methods use features of both the time- and the spectral domain. 

3.3.3.1 SIMPLIF1ED INVRESE FILTERING TECHNIQUE 

The basic idea here is to first eliminate or reduce the effect on x(k) of the 

spectral envelope (which is a characteristic of the vocal tract, not the pitch) and 

then to detect the pitch by the autocorrelation method. Because the second of 

these two steps is described above, we concentrate on step one only. 
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Here then, the way adopted eliminates the effect of the spectral envelope by 

flattening it, which is also called signal whitening. Practically, this can be done 

in the time-domain by inverse filtering, i.e. by a filter which whitens the 

spectrum of x{k). 

3.3.4 CONCLUSION 

Basic pitch detection methods have been presented to give the reader an idea 

of principles and processing methods involved. To the subject, we keep in mind 

that pitch detection remains a difficult task. 

4. SPEECH RECOGNITION 

This section presents two aspects found in most speech recognition 

application: feature extraction and pattern matching. 

4.1 FEATURE EXTRACTION 

The most versatile methods can and have been used to extract features from 

the speech signal. Because most of them have already been encountered in this 

text, we give here just a list of feature extraction methods. 

Time-domain methods: 

Average energy or amplitude 

Average zero-crossing rate 

Autocorrelation function 
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Parcor or LPC coefficients 

Voiced/unvoiced, pitch value 

Amplitude distribution function 

Transform methods: 

Fourier spectrum 

Hadamard transform 

Cepstrum coefficient 

Formants 

4.2 PATTERN MATCHING 

65 

In either speech or speaker recognition, the basic principle of recognition used 

is pattern matching: the unknown speech pattern is compared to already 

available speech reference patterns, then, the best match is detected. If we 

denote D(T,Ri) the pattern distance measure for the unknown test pattern T and 

a reference pattern Ri, i = 1...1, then the recognition decision is: 

1 * argmin [D(T,Ri)] (116) 

Considering speech patterns as time sequence of feature vectors, i.e.: 

T 1(1), 1(2), ... , l(m), ... , l(M) (117) 

Ri = r.(l), r.(2), ... , r.(n), ... , r.(N) 
J. J. J. J. 

and defining the distance measure of two feature vectors: 

(118) 

where 6 is some adequate distance function, we will present the basic methods for 

matching the sequences. 
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The most obvious method establishes a one-to-one correspondence between 

both sequences (which thus must be of equal length M = N) so that the overall 

distance is : 

M 
D(T,Ri) = E d.(m,m) 

i=1 1 

4.3 DYNAMIC TIME WARPING 

(119) 

The Dynamic time Warping (DTW) algorithm provides a procedure to align 

optimally in time the test and reference sequence and to find the optimal 

distance D (T ,Ri) associated to the optimal warping path. The algorithm uses 

the principle of Dynamic Programming which is the theory telling how to find 

optimal paths in graphs. It operates in the two-dimensional field of d.(m,n) 
1 

distances shown is Fig. 23, and finds under given constraints the optimal path 

leading from d.(I,I) to d.(M,N). If we define the cumulated distance at a given 
1 1 

point of the path as : 

C.(m,n) 
1 

J 
E d.(m(j), n(j)) . w(j) 

. 1 1 J= 
(120) 

where the pairs [k(j),I(j)], j = 1. •. J, describe a given path and w(j) is a given 

associated weighting function, then the optimal path is the one which minimizes 

C.(M,N), the cumulated distance at d.(M,N). Formally, 
1 1 

D1(T,Ri) = min Ci(M,N)] 
path 

(121) 

The constraints used are various and fulfill two basic purposes: locally, limiting 

the range of the path slope; globally, limiting the path domain as shown for 

example in Fig. 23. 
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Fig. 23 Principle of DTW 

M 

4:.4: CONNECTED PATTERN MATCHING 

Connected pattern matching is useful to recognize connected speech patterns 

like connected phonemes or connected words. Again we consider the set of 

refrences 'Ri·· and the unknown pattern T which, now, stands fO,r a single pattern 
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made of other patterns connected together. T must now be compared with all 

compound reference patterns made of connected references Ri. We call 

superrefernce R. such a compound reference. Using the notation and definition 

of : 

R. ® R. - r.(I),r.(2), ... ,r.(N.),r .(I), ... ,r .(N.) 
I J I I IIJ JJ 

(122) 

for connected time sequences, we write the gemal superreference as : 

R • (g) -= Rq(l) ® Rq(2) ® ... ® Rq(L) (123) 

where 9. = [q(I),q(2),q(3),q(4), ... q(L)] is the vector of reference indices. 

With the brute force matching approach, the test pattern is compared by 

DTW with all possible superrefrences built from the reference set {Ri, i = 1 ... I}, 

resulting in 1 + 12 + IL single matching operations. 

4.6 TWO-LEVEL DTW 

Starting from the DTW schema between T and Ri explained above, two 

levels are built by normalizing all references to a constant length 

Nl = N2 = ... == NO and thus considering fixed boundaries in the 

superreference. We give the indices 1 = 1,2, ... ,L to the boundaries. They 

appear as horizontal lines in Fig. 24. We call lower level processing, the one 

performed in-between the lines and upper level processing, the one which applies 

to operations performed on the boundary lines. 

The principle of the algorithm is as in the case of simple DTW. The 

two-dimensional distance field can now be written as d.(m,n,I), m = 1, ... ,Mj 
I 

n = 1...N j 1 = 1...L. We search the optimal path leading from d.(I,I,I) to 
o I 

d.(M,N,I) where 1 = 1...L. 
I 
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The upper level keeps track, at each boundary line 1 and for each position 

m of the test sequence, of the optimal path reaching that position in the form of 

the optimal cumulated distance C (m,l) as well as a path descriptor which can 

be the partial reference index vector 9. (m,l), by which we mean that, at the 

boundary 1, the vector components are defined up to component number 1. 

The lower level performs normal DTW between T and {Ri} in the field 

bounded by two boundaries 1 and 1-1 with given boundary constraints. It finds, 

among all paths starting from the boundary 1-1 the best path reaching each 

position m of the boundary 1. Each lower level is repeated for each reference 

{Ri, i = 1...I} which ensures the optimality of the path found. 

Upper and lower level processing once performed for each boundary 

1 1...L, the final optimal path is the one given by : 

D[T,R*(g)] = min[C (M,l)] (124) 

D [T,R*(g)] is the optimal distance for the two-level DTW and 9. is the index 

vector giving the optimal matching. 

The advantage of Two-Level DTW compared to the brute force method is to 

drastically reducing the number of computations and to making thus connected 

pattern recognition possible. It requires computing I basic DTW whereas this 

number is 1+12 + ... +IL in the case of brute force. 

5. CONCLUSION 

In this paper a short tutorial review of major digital signal processing 

methods used in processing speech signals is given. In depth treatments are 

omitted to the detriment of the essence and insight for interpretation. Following 

more than two decades of efforts in designing methods and algorithms, the 

present trend is in transposing these methods and algorithms into VLSI 

implementable architectures for better, faster and more reliable practical systems. 
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It seems reasonable to expect that now, algorithm designers and circuit designers 

will collaborate increasingly to design algorithms more suitable for VLSI and to 

develop technological tools and architectures more convenient for digital signal 

processing and hence speech processing. 
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SYSTEMS FOR ISOLATED 

RECOGNITION 

Roger K. Moore 
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SUMMARY 

AND CONNECTED WORD 

This lecture is intended to provide an insight into some of the algorithms 

and techniques that lie behind contemporary automatic speech recognition systems. 

It is noted that, due to the lack of success of earlier phonetically motivated 

approaches, the majority of current speech recognizers employ whole-word pattern 

matching techniques. It is pointed out that these techniques, although rather 

shallow in concept, have enabled the development of commercial recognizers which 

exhibit useful and practical capabilities. A range of whole-word pattern matching 

algorithms are discussed, and in particular, key techniques such as 

dynamic-time-warping and hidden Markov modelling are explained in some detail. 

It is also shown how techniques for isolated word recognition may be extended to 

recognize connected speech. Each of the various methods is reviewed in the 

context of their computational implications as well as their recognition 

performance. It is also shown how suitable modifications to the basic algorithms 

can facilitate real-time operation. Where possible, specific techniqes are 

highlighted by reference to existing commercial recognition equipment. The 

lecture concludes by focusing on the key factors which limit the performance of 

current recognition tchniques, and by outlining some of the research work which 

may be relevant to future automatic speech recognition systems. 
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New Systems and Architectures for Automatic Speech 
Recognition and Synthesis, Edited by R. De Mori and C. Y. Suen 
© Springer-Verlag Berlin Heidelberg 1985 
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1. INTRODUCTION 

In 1952 Davis, Biddulph and Balashek published the first paper to describe a 

technique for recognizing spoken words automatically. Over thirty years later, 

related techniques still dominate the speech recognition field. 

The purpose of this lecture is to review such techniques and to mark the 

progress of the latest developments. However, before doing so it is necessary 

(and illuminating) to note that many different approaches to automatic speech 

recognition have been attempted over the past thirty years, and of particular 

interest is the traditional pattern recognition approach, popular during the 1950's 

and 60's. 

This early scheme was based on the apparently reasonable assumption that 

speech was a highly redundant signal consisting of a sequence of invariant 

information bearing elements called phonemes. As a consequence, the classical 

speech recognizer took the form of: a pre-processor to selectively reduce the 

quantity of data whilst retaining the relevant information, a feature extractor 

typically to identify formant frequencies, a segmentor to divide the signal into 

phonemic segments, and a classifier to recognize the individual phonemes from 

their features (see figure 1). Recognition of words was then simply a matter of 

looking up the sequence of recognized phonemes in a pronouncing dictionary. 

Schemes of this type abounded, but all failed to a greater or lesser extent 

because of the basic inadequacy of the initial assumptions; a speech signal is not 

as easily characterized as one might wish. Indeed it exhibits properties which 

still make automatic speech recognition a major research topic. 

The reasons why speech recognition is not such a straightforward endeavour 

may be summarized into four main problem areas: 

First, speech signals are normally continuous. That is, there are no regular 

pauses between the words in a spoken sentence, nor are there any other acoustic 

markers to indicate where the word boundaries are. For example, figure 2 shows 
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a speech spectrogram fol' the phrase "we were away a year ago" j the only pause 

in this sentence is in the middle of the "g" in "ago", the rest is a continuously 

changing sound pattern. A recognition algorithm must therefore be able to 

recognize words even when embedded within a surrounding sentence. 

Second, speech signals are highly variable in a number of ways. Obviously 

one person's voice can be very different to another's due to factors such as 

different sex, age or accent. But even a given speaker's voice will be different at 

different times since a speaker may speak softly or loudly or whisper, or might 

have a cold or be tense. In fact, it is virtually impossible for a speaker to say 

the same word in exactly the same way on two different occasions. For example, 

figure 3 shows the word "helicopter" spoken three times by the same personj note 

how the patterns are similar but not identical. 

The continuity of speech is another source of variability. Since words flow 

smoothly one into another, the beginnings and ends of words can change 

significantly. For example, the phrase "bread and butter" may become "breb'm 

butter" if spoken quickly. 

The inherent variability of speech is thus a very big problem for any 

technique which relies on invariance in the signal. A recognition algorithm must 

therefore be able to deal with pattern similarities rather than rely on the 

preservation of absolute identity. 

The third problem area is ambiguity. For example, there is no acoustic 

difference between the words "to" , "too" and "two" . Similarly, "grey tape" 

sounds almost exactly the same as "great ape". A recognition algorithm must 

therefore be able to decide on the identity of a particular word whilst taking into 

account the identity of surrounding words. 

The fourth problem area results from the fact that speech is just one 

component in the complex system of human language. Often it is the intention 

behind a message that is more important than the message itself. For example, 

the most useful answer to the question "Can you tell me the time?" is "10:15" 

not "Yes, I can". 
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Faced with these problems, automatic speech recognition appears to be an 

almost unattainable goal. However, it turns out that by minimizing one's 

assumptions about the nature of speech signals, and by developing the rather 

simple principle exemplified by the 1952 recognizer, it has been possible to begin 

to derive some powerful (albeit only partial) solutions. 

The basic principle underlying almost all current commercial speech 

recognition equipment is illustrated in figure 4. Speech which is to be recognized 

is compared with a set of pre-stored reference words (often referred to as 

'templates'), and the identity of the stored patterns which most resemble the 

unknown pattern determines the result. In this scheme a pre-processor transforms 

the speech signal into some useful representation, a segmentor isolates the speech 

from the surrounding silence, and then a comparison module compares the 

unknown words with each of the templates, and outputs the result. Prior to 

recognition, such a recognizer is 'trained' by presenting it with examples of each 

of the words in its vocabulary at least once. The entire procedure is known as 

'whole-word pattern matching'. 

Notwithstanding the problems posed by variability and continuity, this 

approach relies on the patterns for different words being separable, and for words 

to be recognizable in context. 

The rest of the lecture describes techniques for 'whole-word pattern matching' 

in detail. 

2. PRE-PROCESSING 

The range of signal processing techniques which may be applied to speech 

signals is very large [Schafer and Rabiner 1975, Flanagan 1972, Holmes 1982]. 

However, only a few have established themselves as standard techniques for 

automatic speech recognition. This section describes briefly the most popular 

techniques for producing a useful representation of a speech signal, and also the 
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most common techniques for reducing the data rate of the pre-processor output. 

2.1 Signal Representation 

One of the most crucial factors which determines the success or failure of an 

automatic speech recognizer is the nature of the representation presented to the 

recognition algorithms. 

Short-time Spectrum 

The most common way to analyze a speech signal is to measure its 

short-time spectrum. This is possible because a speech signal can be considered 

to be stationary over a short time interval. Hence the spectrum can be 

estimated using the Fourier transform. One of the simplest methods for 

implementing short-time Fourier analysis is a bank of bandpass filters. Such an 

analysis is the basis of the UK channel vocoder analyzer [Holmes 19801 (see figure 

5) which is used as a front-end to several automatic speech recognizers (and 

which was used to generate the spectrograms and other data presented in this 

paper). 

In general, filter bank analyzers are easy to construct with analogue circuitry 

and the distribution of frequency bands can be readily modelled on the critical 

bands of the human ear. However, unless a very large number of channels is 

used, it is difficult to estimate the spectrum shape around spectral peaks. 

Cepstral Analysis 

The most useful spectral representation for speech recognition is the 

wide-band spectrum (which does not preserve pitch information). Such an 

analysis requires a short data window. However an alternative approach, which is 

able to use a wider time window is homomorphic or cepstral processing. This 

process is based on the assumption that speech is a convolution of an excitation 

function with a vocal tract impulse response. Figure 6 illustrates the scheme for 

separating these two components by liftcring thc cepstrum to obtain a smooth 

spectrum. In practice, the first few terms (excluding zero frequency) of a cosine 
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transform of the short-time log power spectrum may be used [Bridle and Brown 

1974, Hunt et al 1980j. 

Linear Predictive Analysis 

Linear predictive coding (LPC) is an analysis technique which is particularly 

attractive from the computational point of view. In this scheme the 

autocorrelation characteristics of the speech signal are exploited by estimating the 

value of the current sample using a linear combination of the past n samples. 

Figure 7 illustrates the principle. The all-pole properties of LPC analysis enable 

accurate estimations of spectral peaks to be made. However this is only true 

during speech sounds which conform to an all-pole model. During nasals and 

many consonant sounds LPC tends to overestimate the bandwidths of spectral 

peaks. 

2.2 Data Reduction Techniques 

The output of a typical front-end analyzer is thus framed data consisting of 

a sequence of vectors of a given size occurring a certain number of times each 

second. This data rate may be too high for subsequent processes to handle, 

hence techniques can be used for reducing the data rate by various forms of 

coding scheme. 

Vector Quantization 

Speech coding by vector quantization (or 'character string encoding' [White 

1972]) is a technique whereby each frame of spectral data is coded in terms of 

the identity of a prestored reference vector called a 'codeword'. The collection of 

possible codewords is referred to as a 'codebook'. The spectral shape of an input 

vector is thus coded by identifying the particular codeword from the code book 

that minimizes some predefined distortion measure. This means that a speech 

signal can be represented by a sequence of codewords with a bit-rate of b bits 

per vector if there are 2 b • vectors in the code book. 
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A codebook is normally generated by a training procedure which minimizes 

the average distortion resulting from coding a suitably long sequence of vectors. 

This training procedure is essentially a cluster analysis; more codewords are 

allocated where the population of vectors is more dense. 

Trace Segmentation 

Trace segmentation is a 'data-adaptive fram£ rate' technique for reducing the 

number of vectors in a sequence. Each vector is viewed as a point in 

n-dimensional space (where n is the size of each vector) and the trace is the 

sequence of points drawn out by an utterance. The n-dimensional trace is 

subsequently resampled by calculating the total length of the trace, and then 

dividing the trace into a fIxed number of uniformly spaced segments. By suitable 

choice of the new sampling rate, fewer vectors are required to represent a speech 

signal, and those vectors are better distributed (there will be more allocated when 

the spectrum is changing quickly than when it is changing slowly). 

Variable Rate Coding 

Variable frame rate coding is similar to trace' segmentation in that the net 

result is a resampling of a speech signal according to the changing spectrum. 

However, trace segmentation relies on being able to determine the beginning and 

end of a trace. In circumstances where this might not be known (for example in 

the middle of a section of speech) variable rate coding techniques may be utilized. 

The simplest scheme is to set a threshold such that a vector in a sequence 

is only retained if the distance between it and the last retained vector exceeds 

the threshold. Hence by adjusting the value of the threshold, the resampling rate 

can be varied to suit the circumstances; the higher the threshold, the fewer 

samples there will be in the more stationary regions of the signal. 

More complex schemes have involved averaging vectors [piereccini and Billi 

1983] or multiple thresholds [Bridle and Brown 1982]. 
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3. ISOLATED WORD RECOGNITION 

Any approach to automatic speech recognition must overcome the continuity 

problem outlined in section 1. However, the simplest and most effective solution 

is obvious; ask the speaker to put artificial pauses between his words, thereby 

sacrificing naturalness in favour of greatly simplifying the recognition process. 

Each word is thus 'isolated' from its neighbours, and can be recognized 

individually. 

Even for isolated words, the key to the success of the whole-word pattern 

matching approach lies in the comparison process (see figure 4). The rest of this 

section is concerned with techniques for implementing the comparison. 

3.1 Absolute Pattern Match 

The most basic comparison process is simply to correlate the time-frequency 

word patterns producd by the pre-processor in order to determine the 'distance' 

between an unknown word and each template. Unfortunately this is not possible 

because words are often different durations, hence their corresponding patterns are 

different sizes. However, by aligning the beginnings of all the patterns, and by 

correlating only over the areas of overlap, it is possible to generate a suitable 

measure of correlation (or distance: for example, the sum of the squares of the 

differences). The length difference can also be taken into account separately 

(White and Fong 1975]. 

Although rather simple minded, such a technique requires the minimum of 

computation: N vector comparisons per pattern match, where N is the number 

of vectors in the smallest pattern. 

The performance of the technique can be gauged from White and Fong's 

experiments: the error rate for a test using a 54 word vocabulary, six band-pass 

filters (sampled every 10 ms) and vector quantization (32 codewords) was 7%. 

White identified misalignment of the beginnings of words as a source of some of 

the errors. 
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3.2 Best Absolute Time Alignment 

An alternative to aligning the beginnings of words in order to perform an 

absolute comparison, is to adjust their relative timing to maximize the correlation 

of the overlap. This means starting with the beginnings aligned, then shifting 

the patterns with respect to each other until the ends align. The similarity of 

the pattern overlap is calculated at each shift, and the highest similarity is the 

output of the comparison. 

Computationally this scheme is much more expensive: M*(N-M) vector 

comparisons, where N is the number of vectors in the longer pattern, and M is 

the number of vectors in the shorter pattern. 

Recognition performance on the ten digit vocabulary, with a 16 channel filter 

bank (10 ms frame rate) was found to be only 82% using this technique [Moore 

1980}. However, this level of performance is to be expected, since the behaviour 

of the algorithm for comparing different words is somewhat unpredictable. 

3.3 Linear Time-Normalization 

The problem with the two previous techniques is that they do not 

accommodate the fact that the same word is very rarely the same duration on 

different occasions. For example, in figure 3 it can be seen that the three 

versions of "helicopter" all have different lengths. A solution therefore, is to 

uniformly 'time-normalize' each pattern in order to make them the same size. 

Such a technique is referred to as 'linear time-normalization'. 

Figure 8 illustrates the process on a pair of utterances of the word 

"helicopter" . The two original patterns are shown at right angles to each other 

so that the two time scales can be compared. It is clear that the vertical 

utterance is much longer than the horizontal one. The rectangle on the right is 

prescribed by the lengths of the two words, and the diagonal line is the linear 

time-normalization relationship between the two. The third pattern IS the result 

of stretching the horizontal one to the same length as the vertical one. The net 

result is that the two vertical patterns are more similar than the originals. 
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In practice, either the template patterns are time-normalized to the unknown 

word, or all patterns are time-normalized to a standard duration. In both cases 

the distance calculation involves a constant number of vector comparisons: N 

vector comparisons per pattern match, where N is the number of vectors in the 

input word (or in the standard length pattern). 

The recognition performance of linear time-normalization can be quite useful 

if the vocabulary is kept reasonably small, 10 to 30 words for example. For the 

ten digits, one could expect recognition accuracies up to about 97% under ideal 

conditions. The actual performance obtained depends, amongst other things, on 

the inherent confusability of the words, the consistency of the speakers, the exact 

nature of the pre-processing and the number of training examples allowed per 

word. 

In practice, the level of performance is such that several commercial speech 

recognizers employ the linear time-normalization principle. 

EXAMPLE SYSTEM: Interstate Electronics VRM 

Pre-processing: 

- 16 channel analogue filter bank 

- bandwith: 200 Hz to 7000 Hz 

- 5 ms frame rate 

--- variable rate coding (user definable threshold) 

- minimum number of frames per word: 16 (80 ms) 

- maximum number of frames per word: 250 (1250 ms) 

Segmentation: 

- endpoint detection by spectral energy change 

- user definable threshold 

- minimum pause between words: 40 ms to 320 ms (user definable; default 

160 ms) 
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Training: 

- 40, 70 or 100 reference word patterns (depending on model) 

- 32 bytes (256 bits) per reference pattern 

Recognition: 

- linear time-normalization (linear conversion from 250 frames to 256 bits) 

- recognition based on number of bits in agreement between standard length 

patterns 

- user definable reject threshold 

Computation: 

- CPU plus 4K ROM and up to 4K RAM (for references) 

- processing time is 25+N ms, where N is the number of references 

- response time is pause length plus processing time 

Recognition accuracy: 

- 2.9% error on Doddington-Schalk [1981J Texas Instruments (DSTI) data 

(20 word vocabulary; "zero" to "nine" plus ten command words, 8 men and 

8 women, 5120 test tokens in total) 

Cost: 

- $2400 

- latest product: VRT300 (512 bits/word, 200 words, 81295) 

3.4 Non-Linear time-Normalization 

For larger vocabularies, the recognition accuracy of linear time-normalization 

can drop significantly. The reason is that linear timescale distortion is not an 

adequate model of what actually happens when people make words longer or 

shorter. In reality some sounds are lengthened (or shortened) more than others. 

This effect is apparent from figure 8; although linear time-normalization has made 

the patterns the same lengh, it has still not made them particularly similar. In 

particular the technique is susceptible to 'endpoint detection' errors since correct 

normalization depends on the first and last frames being correctly aligned. In 



www.manaraa.com

original 
pattern 

· " ." ....... . 
••••• 11 ••••••••••••• ................. ,. 
•• .. II ......... " .. II •••• . -...... ~ •••....•.. 
• .... II " ~ • II ... . . . . "II .. .. 
,,~ . ... " . .... , • • • , ... III .. 
... • II II. I II.. • • • ... II .. 
• ........ II.. • • ..... .. 
.. " ... II .. II • • • . .... .. 
• .. . ... " . • • II .. 

• • " • • • " ........ II ..... . . '" ........ . 
• " .. " " II ••• 

• '" , . . .... , • " ... II .. " ... ... : ~:::: 
- ........ 

• ..... II ... 
• "II I • I • III" II .. I 

time 
normalised 
pattern 

•••• 1' .............. . 
,0 ••••••••• , .. , ••••• 
...... ••••• ..... •• I ... .. 

, .. II ........... ,- ... II II .. 
" ......... II ....... , ....... .. • ..... ".1' •.•. " ... II .. .. . ...... .. 

• .... II .. 

• • ,II • , ... II •• " .. II .. II" ..... II.' " ........ II •••• 
.. " •• II •• " ............. , 

•• II elf. II •••• 

.. .. . . . .. .. . . . 
.. . ......... II ... . .. II"" • 
• . . ........ I II ...... "II .... . 

. ...... • • I II .. . " ... II ... " 
• • I II ... " ... III 1111 • 

91 

• 1111 .. , ........ 
. .. r ..... 

• II ••• I 

. . :::': ' ..... 
. ... " 
II' It II • • 
.. ' .11 • 

II ••• . .. .... . . ... . .... .... . . .... 
•• ••• • • It •• 
II. II. II • , ••• • 

..... .... 
original 
pattern 

Figure 8 DemoD.8tration of linear time-normalisation between two TersioD.8 of 
the word "helicopter". 



www.manaraa.com

92 

figure 8, the end of the horizontal pattern has been missed and extra silence has 

been included; it is clear that a better match would have resulted if the end of 

the horizontal pattern had been determined more accurately [Rabiner and Sambur 

1975]. 

However, as suggested above, a better model of timescale distortion would be 

one which allows different sounds to be distorted differentially. By eye one can 

see from figure 8 that the patterns do have similar structures, and one can 

imagine that by distorting the horizontal pattern non-linearly, it could be made to 

look more like the original vertical pattern. Figure 9 shows such a non-linear 

time-normalization or 'time registration path'. 

In fact, the time registration path in figure 9 was determined by eye, and it 

is obvious that it could be further modified to achieve a better match. Of 

course in practice it is necessary to find such a path automatically, but this 

involves a search space of many millions of possible paths! Luckily it is possible 

to use the mathematical technique of 'dynamic programming' (DP) to solve this 

optimization problem using only N*M operations (where Nand M are the number 

of frames in the two patterns), and since DP is guaranteed to find the best 

solution, the result is optimal non-linar time-normalization or 'dynamic time 

warping' (DTW). 

Figure 10 shows the result of using dynamic programming to find the best 

path; note how similar the vertical time-distorted version of the original horizontal 

utterance is to the original vertical utterance. 

Dynamic time Warping 

DTW is essentially a two-stage process; figure 11 illustrates the first stage. 

Two abstract speech-like patterns are shown, one vertically and one horizontally. 

Each pattern has time frames consisting of 3-element vectors; the vertical pattern 

has four frames, and the horizontal has five. The matrix in the centre is known 

as the 'distance matrix' and it contains numbers which correspond to the distance 

between each frame in one pattern and each frame in the other pattern. For 

example, the number "20" in the top right hand corner indicates that the first 
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frame of the vertical pattern is quite different to the last frame of the horizontal 

pattern. Similarly, the "1" in row-2 column-2 indicates that the second frames of 

each pattern are very similar. The distances are actually calculated by taking 

the sum of the squares of the differences between each element of each pair of 

frames. 

The second stage is to find the path through the distance matrix, from the 

top left hand corner to the bottom right hand corner, which has the minimum 

accumulated sum of distances along its length. This path is the required 

non-linear relationship between the timescales of these two patterns, and it is 

found by dynamic programming. 

Dynamic programming involves the regular application of a local optimization 

procedure which ultimately leads to an overall global solution. In this case a 

'local decision function' is used, together with the distance matrix, to construct a 

second matrix called the 'cumulative distance matrix'. Figure 12 illustrates the 

process. The local decision function is shown in figure 12a, and it defines that a 

path may arrive at any particular point either vertically, horizontally or 

diagonally. It is applied as follows: 

For each point in the cumulative distance matrix, add the cheapest cost of 

getting to that point to the cost of being at that point, and enter it in the 

matrix. The cheapest cost of getting to a point is the smallest of the values III 

the previous entries (as defined by the local decision function) and the cost of 

being at a point' is simply the value taken from the corresponding position in the 

distance matrix. Hence, if this process is applied iteratively, starting at the top 

left hand corner of the matrix, it is possible to complete all the entries in the 

cumulative distance matrix. 

Figure 12b shows the cumulative distance matrix in the process of being 

filled in. The "7" indicates the point being considered, and the three previous 

points are highlighted. The cost of getting to the point is the minimum of 19, 

13 or 21, and the cost of being at that point is 12 (from the distance matrix in 

figure 11). Hence the cumulative distance entered at that point is 25 (13+12). 
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Figure 12c shows the cumulative distance matrix completely filled in. The 

number in the bottom right hand corner is highlighted because this is the overall 

distance between the two patternsj it is the sum of distances along the least-cost 

path through the distance matrix. To find the path it is necessary to remember 

at each point in the calculation exactly which local decisions were made 

(horizontal, vertical or diagonal). Figure 12d shows all of these decisions and it 

can be seen that they form a tree radiating from the top left hand corner (where 

the calculation started). The actual minimum cost path is found by tracing back 

along the local decisions, starting at the bottom right hand corner (where the 

calculation ended). 

Referring back to the distance matrix (figure 11), the calculation shows that 

the least-cost path takes the route 7 +1+5+12+2j no other path has a cumulative 

sum less than 27. 

The formulation for this dynamic programming calculation is the following 

recursive expression: 

D(i,j) d(i,j) + min[D(i-1,j),D(i-1,j-1),D(i,j-1)] 

where 1 ::; i ::; I and 1 ::; j ::; J (I and J are the numbers of frames in the 

two patterns being compared), d is a distance measure between two frames, and 

the initial condition is D(O,O) = 0. The overall distance between the two 

patterns is D(I,J). 

As an example of the same process applied to real speech patterns, figure 13 

shows the comparison of two versions of the phrase "joe took father's shoe bench 

out" . In this case the values in the distance matrix are shown as point densitiesj 

similar regions give rise to the highest density of points. From figure 13 the 

most likely route for the optimal time registration path can easily be seen by 

eye. 
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Figure 13 Distance matrix obtained by comparing two versions of the phrase 
"joe took father's shoe bench out". 
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Figure 14 shows the cumulative distance matrix corresponding to figure 13. 

The effect of the dynamic programming has been to form a rising valley of 

cumulative distances since high cumulative distances tend to lie well away from 

the likely route of the optimal path. 

The matrix of local decisions is shown in figure 15. The complete tree is 

shown, and the best path, obtained by backtracking from the bottom right hand 

corner, is clearly visible. The result indicates that the "joe" in the vertical 

utterance was said much slower than in the horizontal, but the rest of the phrase 

has a more nearly linear temporal relationship. 

Local Path Constraints 

The technique described above is perhaps the simplest variant in the range 

of possible DTW algorithms, and it is termed the 'basic symmetric' algorithm. 

This refers to the shape of the local decision function which in this case is very 

simple, but in general may take many different shapes. For example, figure 16 

shows several local decision functions which have been found to be useful. 

Essentially the local decision function determines the shape of possible time 

registration paths and hence the nature of the optimization that will be achieved. 

By varying the shape of the function, different properties can be introduced. For 

example, the basic symmetric function allows paths to have long horizontal or 

vertical stretches, and this might be considered to be undesirable. In this case it 

is possible to introduce extra limbs to the decision function such that a horizontal 

or vertical step can only be taken after a diagonal (see the 3rd function in figure 

16). 

In these circumstances the slope of the path is constrained by the shape of 

the local decision function, hence this property is referred to as the 'local path 

constraint' or 'slope constraint'. Similarly, the consequences for the total time 

registration path are that certain areas of the distance matrix are never visited. 

This effect is referred to as the 'global path constraint'. 
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Figure 16 A selection of local decision functions. 
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In order to generalize these concepts, each limb of a local decision function 

is termed a 'production' [Myers et al 1980]. Hence a local decision function can 

be described as a list of productions, and a complete time registration path can 

be described by a sequence of productions. 

Production Weighting 

A softer form of path control is achieved by weighting the various 

productions in a local decision function. For example, in the case of the basic 

symmetric function, there is a natural bias towards paths which have more 

diagonal productions (since these paths will naturally have fewer distances) and 

this might be an undesirable property. Weighting the diagonal production by a 

factor of two cancels out this bias [White and Neely 1976, Sakoe and Chiba 

1978J. 

In general each production may be weighted differently according to some 

predetermined path constraint requirement. 

Path Length Normalization 

The total cumulative distance along the optimal path will obviously depend 

on the total number of distances (and productions) which make up the path. 

Hence comparisons between long word patterns are bound to give rise to larger 

overall distances than comparisons between short patterns. To avoid this causing 

a problem, it is possible to normalize the final cumulative distance such that it 

represents the average distance per unit length of path. 

Various normalizations are possible; Sakoe and Chiba suggest dividing the 

cumulative distances by I+J, where I is the length of one pattern, and J is the 

length of the other. It is also possible to divide by the actual length of the 

path, if such information is available. 
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Distance Measure 

The entire DTW process ultimately depends on the choice of a suitable 

distance measure between two speech frames or vectors. Various alternatives may 

be used; for filter bank analyzer frames it is common to use either the 

'city-block' metric, or the 'squared-Euclidean' metric. (The latter is squared so 

that the cumulative distance between two patterns can be interpreted as a global 

Euclidean distance between them.) In the case of an LPC analysis, it is common 

to use the log likelihood distance ratio proposed by Itakura [1975J. 

Isolated Word Recognition Using DTW 

Figure 17 shows an example of isolated word recognition using optimal 

non-linear time-normalization. In the example there are three reference patterns, 

the digits "one", "two" and "three", shown vertically. The horizontal pattern is 

the word to be recognized (actually a "one"). The unknown word is compared 

with the three reference patterns using the techniques described above, and the 

three resulting non-linear time registration paths are shown. Also shown are the 

cumulative distances between the unknown pattern and each of the reference 

patterns. The best match is determined by the smallest distance, hence the 

unknown word is correctly recognized as "one". 

The algorithm used in the example is the basic symmetric with no slope 

constraints and no path length normalization. To interpret the non-linear time 

registration paths, it should be noted that when matching two words which are 

the same, the distortions tend to be subtle variations on an essentially linear 

theme. On the other hand, when two different words are compared, the time 

registration paths tend to be extremely non-linear. This is because it takes a 

severe distortion of the timescales of two different words to make them even 

remotely similar. In fact, this is why slope constraints may sometimes increase 

recognition performance; in-class time registration paths will be unaffected, but 

out-class matches will be forced to be non-optimal (in comparison with the 

unconstrained condition) and thus further apart - hence less confusion. 
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In practice it is possible to have more than one reference per word, and this 

enables more variability in pronunciation to be captured. Similarly, some training 

procedures involve averaging different examples to obtain a suitably representative 

reference pattern. The Bell laboratories 'robust' training procedure is a hybrid of 

the two, combining averaging with a statistical clustering technique [Rabiner and 

Wilpon 19801. 

The computational requirement for DTW is composed of two 

parts: calculation of the distance matrix, and calculation of the dynamic 

programming optimization. It is not necessary for these two processes to be kept 

entirely separate (as in the example given above), but care must be taken to 

avoid calculating any of the distances more than once. A comparison of a word 

pattern of length M and a word pattern of length N therefore consists of M*N 

vector comparisons (the distance matrix) and M*N DP minimizations if there are 

no slope constraints. If there are slope constraints, then there will be fewer 

operations. The split between the distance matrix and DP calculation is 

approximately 80%:20% of the total time taken. 

The recognition performance of isolated word recognizers based on DTW 

techniques is significantly better than that obtainable from linear 

time-normalization. This is because DTW provides a far more realistic timescale 

compensation process; greater variability can be accommodated, hence larger 

vocabularies may be used. Also by using relaxed endpoint constraints (the 

position where the timescale registration path is allowed to start and end), DTW 

does not suffer from the same dependency on endpoint detection as linear 

time-normalization. Hence the segmentor can be much simpler, and it is left to 

the DTW process to decide precisely where the words begin and end. 

Typically, for the ten digits, one could expect recognition accuracies greater 

than 99% (the NEe DP-I00 DTW based recognizer scored 98.8% on the DSTI 

test). 
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EXAMPLE SYSTEM: VOTAN V5000 

Pre-processing: 

- 16 channel filter bank 

bandwidth: 150 Hz to 4000 Hz 

1000 bits for every 0.5 seconds of speech 

- incorporates voice store and forward facility 

Segmentation: 

- pause between words: 500 ms 

Training: 

- 500 seconds of template storage 

- maximum vocabulary: 256 words 

Recognition: 

- dynamic time warping 

- second choice available 

Recognition accuracy: 

- 0.55% errors on DSTI data (test performed by VOTAN) 

Cost: 

$5000 (VIOOO board alone: $3200) 

3.5 No Time-Normalization 

The developing theme so far in section 3 has been the progressive relaxation 

of timescale registration constraints. Therefore, the next logical step from 

non-linear time normalization is to allow any assignment of time aligned points, 

without regard for temporal ordering at all in other words, no 

time-normalization! 
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Although this idea sounds trivial, it is at least interesting to know how well 

it is possible to do by ignoring temporal information completely. In fact the very 

first recognizer (mentioned in the introduction) correlated word patterns without 

regard to the temporal sequence. More recently, Shore and Burton [19821 have 

pursued this concept in more detail. 

The basic idea is that by using vector quantization, it is possible to set up 

a separate code book for each word in the vocabulary. Recognition is then simply 

a question of which codebook best fits an unknown word (the fit being 

determined using the average distortion resulting from coding a word). 

Computationally, each input vector has to be compared with all of the 

codewords in each codebook. 

Surprisingly, the recognition performance obtained by Shore and Burton was 

excellent; 0.8% error on part of the DSTI database (which is comparable with the 

performance of DTW based techniques). The implications of this result are 

therefore important since it raises questions about whether DTW algorithms make 

the best use of the extra temporal information which they have at their disposal. 

3.6 Stochastic Modelling 

Perhaps one reason why Shore and Burton found such superior performance 

for recognition without time-normalization is that vector quantization is essentially 

a statistical data collection process. Hence by training their vector quantizer on 

all of the available training material, they were in a better position than DTW 

recognizers which could only use part of the training material. The implication is 

thus that automatic speech recognizers might achieve much better performance if 

they were statistically based; indeed one would be foolish to expect a recognizer 

to perform outstandingly well if its entire knowledge about speech is a single 

example of each word in its vocabulary. The recognizer ought at least to be 

given some information about the variability in the patterns. 
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One simple way of providing variability information is to use more than one 

example of each word. However, this leads to a large increase in the amount of 

computation required. An alternative is to use 'average' templates, but what this 

means for DTW based techniques is not absolutely clear. It is more constructive, 

however, to consider the statistical assumptions underlying the entire whole-word 

pattern matching process [Bridle 1979]. 

Statistical Pattern Recognition 

In the completely general case, it would be possible to obtain the best 

classification of an observation vector 0 in terms of a set of classes C by finding 

for which j P(CjIO) is a maximum: 

o is from Ci if P(CiIO) max P(CjIO) 
j 

Unfortunately it is difficult to measure P(CIO) directly, but using Bayes' 

theorem: 

P(CjIO) = P(OICj) '" P(Cj) / P(O) 

Thus by substituting, and by ignoring the a-priori frequencies of occurrence 

of the classes, a 'maximum likelihood classifier' is obtained: 0 is from Ci if 

P(OICi) = max P(OICj) 
j 

The advantage of this statement is that P(OICj) is easily measurable for each 

class. Hence, for an observation pattern which is a speech pattern O(N, T) (where 

N is the size of the analysis frame and T is the number of time-frames in a 

word), if Nand T are fixed (T being fixed by using time-normalization of some 

description), then it would be possible to construct the optimal statistical 

classifier. In practice, such a high dimensionality problem (N*T) would require an 

inordinate amount of training data and would therefore be unfeasable. 
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Therefore, to make the problem tractable it is necessary to introduce some 

assumptions~ 

a) assume multivariate normal distributions - this means that it is only 

necessary to measure class means and covariance matrices, 

b) assume each frame and each element of the analysis vector are independent 

- this means that the covariance matrices are diagonal, 

c) assume all variances are equal, and equal to 1. 

These assumptions lead to the following consequences; 0 is from Ci if 

P(O\Ci) - max II P(O(n,t)ICj) 
j n,t 

where O(n,t) is the scalar value of the speech pattern at element n of the vector 

at time t. Hence from the one-dimensional form of the normal distribution: 

P(O(n,t)ICj) = 1/.../27r * exp[ -(O(n,t)-M(n,t\Cj))2/2] 

where M(n,tICj) is the mean value of the class j speech pattern at ,element n of 

the vector at time t. If, for convenience, logs are taken (and constant terms are 

ignored) then log P(O(n,t)ICj) becomes log exp[ -(O(n,t)-M(n,tICj))2 which is: 

-(O(n,t)-M(n,tICj))2 

and the product of terms becomes a sum. Hence 0 is from Ci if 

log P(O(n,t)ICi) = max - E (O(n,t)-M(n,tICj))2 
j n,t 

[min E (O(n,t)-M(n,tICj))2] 
j n,t 

and this is the familiar nearest neighbour squared Euclidean distance. Hence such 

a classifier functions by finding the pattern match which results in the smallest 
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sum of the squared differences over the entire patterns. 

Thus whole word pattern matching is already operating in a statistical 

framework where a time-normalized example of an actual word is used to provide 

the values for M(n,t). So the question is not how to introduce statistics into 

whole word pattern matching, but how to relax some of the built-in assumptions. 

However, more important is the reliance of the above statistical analysis on 

the use of time-normalized patterns. It explains how DTW is able to use 

minimum squared Euclidean distance as an optimization criterion, but it does not 

give an insight into capturing the average statistical behaviour of variable length 

patterns. A technique which does address this problem is 'hidden Markov 

modelling' . 

Hidden Markov Models 

Levinson et al [1983J describe a hidden Markov model (HMM) as follows: "A 

probabalistic function of a (hidden) Markov chain is a stochastic process generated 

by two interrelated mechanisms: an underlying Markov chain having a finite 

number of states, and a set of random functions one of which is associated with 

each state. At discrete instants of time, the process is assumed to be in a 

unique state and an observation is generated by the random function 

corresponding to the current state. The underlying Markov chain then changes 

states according to its transition probability matrix. The observer sees only the 

output of the random functions associated with each state and cannot directly 

observe the states of the underlying Markov chain, hence the term hidden Markov 

model." 

Typically, hidden Markov models of speech employ vector quantization in 

order to reduce the random functions associated with each state to non-parametric 

distributions over a finite set of output symbols. 

If H is a hidden Markov model with N states and M symbols, then 

H = (7r,A,B) where 7r is an initial state probability vector (Nxl), A is a 

transition probability matrix (NxN), and B is a state ou~put symbol probability 
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matrix (NxM). These matrices completely specify the model. For example, 1r{i) 

is the probability of starting at state i, a(i,j) is the probability of moving from 

state i to state j, and b(i,o) is the probability of observing output symbol 0 from 

state i. 

To recognize a speech pattern, it is necessary to compare the sequence of 

observations 0 (O=o(l), ... ,o(T») with each of the word models in order to find Hj 

which maximizes P(OIHj). P(OIH) is found as follows: 

A model can only generate an observation sequence of length T via a state 

sequence of length T. Hence if S is a state sequence (S=s(l), ... ,s(T», then the 

joint probability of 0 and S given the model H is 

P(O,SIH) = P(SIH) * P(OIS,H) 

Now: 

P(SIH) 1t[s(l)]*a[s(l ),s(2)]*a[s(2),s(3)]* ... *a[s(T-l),s(T)] 

and 

P(OIS,H) = b[s(1),o(1)]*b[s(2),o(2)]* ... *b[s(T),o(T)] 

which by combining leads to: 

T 
P(O,SIH) = 1t[s(l»)*b[s(l),o(l»)* II a[s(t-l),s(t)]*b[s(t),o(t») 

t=2 

To obtain the probability P = P(OIH) it is necessary to sum the probabilities 

P(O,SIH) over all state sequences of length T, and this may be achieved efficiently 

using dynamic programming. The required recursive expression is: 
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N 
F(t,i) = [E F(t-l,j)*a[s(j),s(i)]] * b[s(i),o(t)] 

j==1 

where F(t,i) is the probability of o(I), ... ,o(t) finishing in state i at time t given 

the model H, and the initial condition G(I,i) is 1!'(i)*b[s(i),o(I)]. Hence, since 

F(T,i) is the probability of 0 finishing in state i at time T: 

P(OIH) = F(T,i) 

Or, if H is a left-right model (one for which a(i,j) = 0 for j :5 i: no backward 

transitions), then the final observation must come from state N and P(OIH) 

becomes F(T,N). 

There are two distinct advantages of this type of statistical model for speech 

patterns. First, in addition to the variability within an analysis vector, it can 

model the temporal variability of speech data. 

Second, there is an established technique for training the model: the 

'Baum-Welch algorithm'. 

The training procedure involves re-estimating the parameters of a model H in 

order to make P(OIH) larger, where 0 is now a training sequence. Intuitively, a 

good way to re-estimate the state transition probability from state i to state j, 

would be to measure the average number of transitions from i to j (given 0 and 

H) and to divide by the measured number of transitions out of i (given 0 and 

H). Similarly, the state output symbol probability of symbol s at state i can be 

re-estimated by counting the average number of observations of symbol s from 

state i, and dividing by the average number of observations of all symbols from 

state i. 

Baums theorem [1972] gives a rigourous backing to these intuitive notions 

and proves that for the re-estimated model H': 
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P(OIH ') ~ P(OIH) 

In order to perform the re-estimation, it is necessary to introduce a second 

dynamic programming pass, but in the reverse direction. It is then possible, by a 

suitable combination of the forward probabilities F with the (new) backward 

probabilities to re-estimate the parameters of a model. This process is commonly 

referred to as the 'forward-backward' algorithm. 

Isolated Word Recognition Using HMM 

In the experiments described by Levinson et al [1983], a five state left-right 

model was used with limited, but regular, allowable state transitions. Figure 18 

illustrates the model. The vector quantizer used a codebook containing 64 

codewords. 

The experiment itself consisted of a data base of two sets (training and test) 

of 1000 spoken words; one example of each of the ten digits, spoken by 50 men 

and 50 women. The training set was used to estimate the parameters of the 

vector quantizer and of the hidden Markov model, and the test set was then 

recognized. In addition, a comparison was made with a DTW based system using 

the same vector quantized data. 

The results showed that there was almost no difference in recognition 

accuracy between the two approaches, both achieving slightly more than 96%. 

However, from a computational point of view the HMM requires an order of 

magnitude less storage and execution time. 

The implications of hidden Markov modelling for automatic speech recognition 

are thus very important. Whereas DTW based techniques have a very simple 

training phase (just data collection) and a very complicated recognition phase, 

HMMs are just the reverse. It can be argued therefore that an HMM provides 

the correct balance for any practical system. 
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EXAMPLE SYSTEM: Dragon Systems 

Pre-processing: 

- 8-bit AID conversion 

- time domain featues 

Training: 

- 16/32 word vocabulary (Mark IT: 96 words) 

- any number of repetitions of each word (typically four) 

Recognition: 

- isolated words 

- hidden Markov modelling 

- result may be output before word is finished 

Computation: 

- software system 

- runs on 6502 microprocessor (also 8086) 

- response time may be negative 

Recognition accuracy: 

- 0.7% error on DSTI data (test performed by Dragon Systems) 

Cost: 

- $10 per unit to original equipment manufacturers 

4. CONNECTED WORD RECOGNITION 

The use of dynamic programming related techniques is obviously very 

important to achieving practical recognition performance from isolated word 

recognizers. However, this is not the only useful attribute; it turns out that it is 
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possible to extend the techniques from isolated to connected words using relatively 

simple modifications to the algorithms. 

To understand the principle behind these modifications, consider the isolated 

word recognition result illustrated in figure 17. Three time registration paths are 

shown, the best path (for the correct match) and two sub-optimal paths. H it 

were the case that only the best path were displayed, then it can be seen that 

the DTW process is one which finds the best explanation of the relationship 

between the unknown word and one of the reference patterns. Therefore, to 

recognize a sequence of connected words, it is necessary to find a time 

registration path which best explains the relationship between the unknown phrase 

and a sequence of reference patterns (a 'super' reference pattern). 

This optimization can be achieved by a number of different techniques. 

4.1 One-Pass Algorithm 

Perhaps the simplest (yet very effective) connected word recognition algorithm 

has been described by Bridle and Brown [1979]. In this scheme the dynamic 

programming calculation is arranged such that the time registration path may 

leave the end of one reference pattern and enter the beginning of another. To 

do this it is necessary to use a slightly more complicated local decision function 

on the edges of the dynamic programming matrices than in the middles. Figure 

19 illustrates the point. Essentially those productions on the top edge of a 

matrix, which would normally refer to non-existant data outside of the matrix, 

are duplicated and attached to the trailing edges of all the other matrices 

(including the same one). Paths are thus able to enter and leave reference 

patterns according to the local minimizations. .AB before, the best path is not 

known until all of the local decisions have been madej backtracking then reveals 

the result. 

To avoid complicated recursions and also path length normalization problems, 

the local decision function is chosen to be asymmetric (in fact the second example 

in figure 16). The asymmetry is arranged such that each production takes a 

path from one input vector to the next. Hence all possible paths will have the 
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same number of distances along their length, that number being equal to the 

number of frames in the unknown phrase. This also means that the computation 

may be performed on a column by column basis, hence processing one input 

vector with all of the reference data at each step. 

Figure 20 shows an example of connected word recognition using the one-pass 

algorithm. The reference patterns are the same words as in figure 17, but the 

unknown pattern consists of a sequence of words (actually "11213"). The best 

path, determined by DTW, is shown, and it can be seen jumping around from 

template to template. The trajectory reveals that the phrase is correctly 

recognized as "11213". 

(In comparing figure 20 with figure 17 it should be noted that there is only 

one path in figure 20: the optimal path, whereas in figure 17 three paths are 

shown: the optimal one and two sub-optimal ones.) 

The computational requirement of the one-pass connected word recognition 

algorithm is exactly the same as for a DTW based isolated word recognition 

algorithm apart from the small amount of extra work needed to process the 

additional productions at template boundaries. Hence there are T*R*V vector 

comparisons, and the same number of DP minimizations, where T is the number 

of frames in the test pattern, R is the average number of frames per reference 

pattern and V is the number of reference patterns. 

The recognition accuracy of the technique depends on a number of factors. 

First, the algorithm assumes that continuous speech is made up of isolated words 

spoken in sequence. Obviously this is not the case, hence the recognition 

accuracy will only be high if the user speaks carefully and avoids coarticulation 

effects at the word boundaries. Second, the asymmetric local decision function 

imposes a 2:1 slope constraint which can easily be broken when comparing 

connected speech with isolated training examples. 

One way to overcome both of these problems is to use an 'embedded' 

training procedure whereby reference words are extracted from a carrier sentence 

[Rabiner et al 1982). The beauty of this technique is that a connected word 
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recognition algorithm can be used to do the extraction. A simpler technique is 

to train such a connected word recognizer on isolated reference patterns which are 

spoken rather abruptly. 

EXAMPLE SYSTEM: Marconi SR128 

Pre-processing: 

- 19 channel filter bank 

Training: 

- 128 seconds of template storage 

-maximum number of templates: 240 

- maximum length of a template: 2 secs. 

- built-in digital mini-cassette recorder for long term storage 

Recognition 

- one-pass connected word recognition algorithm 

- maximum length of a phrase: 8 secs. 

Computation: 

- recognition response time: 50 ms 

Cost: 

- £ 10000 

4.2 Two-Level Algorithm 

The two-level connected word recognition technique of Sakoe [1979] was the 

first practical attempt to extend DTW beyond isolated words. It operates by 

first finding the optimal reference pattern to match any part of the unknown 

phrase and then by finding the optimal way to connect together the partial 

matches. Consequently, two dynamic programming processes are required, one at 

the word level and one at the phrase level, hence the term 'two-level'. 
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At the first level a standard isolated word DTW algorithm is used to find 

the minimum cumulative distance between each reference pattern (r) and all 

possible start frames (s) and all possible end frames (e) in the test 

pattern: D(r,s,e). 

At the second level a dynamic programming algorithm is used to find the 

path through D(r,s,e) which minimizes the total distance starting with s as the 

first frame of the test pattern, and ending with e as the last frame of the test 

pattern: 

D'(n,e) min [min [D(r,s,e)] + D '(n-l,s-l)] 
s r 

where D '(n,e) is the cumulative distance obtained by matching the best 

concatenation of n reference patterns to the portion of the test pattern between 

frame 1 and frame e, and min[D(r,s,e)] over r is the distance resulting from the 

best reference pattern match between frames sand e of the test pattern. 

The computation may be stopped once n is large enough to cover the 

maximum number of words expected in a phrase. The result can then be found 

by selecting the minimum value of D'(n,E) (where E is the last frame in the test 

pattern), and then backtracking through the local decisions (at the second level) 

to find the best sequence of n words. 

Computationally the two-level algorithm is much more complicated than the 

one-pass algorithm (due to all the D(r,s,e) partial distance calculations); 

approximately T*R4*V DP minimizations, where T is the number of frames in 

the test pattern, R is the average number of frames per reference pattern and V 

is the number of reference patterns. However, the result of the different 

approaches should be identical. This IS because ultimately they are both 

minimizing the same thing. However, the two-level algorithm does have the 

advantage that it is very easy to extract the recognition result for each value of 

n, that is, the scores for different length word hypothesese. Also, if required, it 

is easy to specify in advance how many words are in the unknown phrase. 



www.manaraa.com

124 

Hence, errors of word deletion or insertion may be avoided. (It is possible to do 

the same for the one-pass algorithm, but it is much more complicated.) 

EXAMPLE SYSTEM: Nippon Electric Company DP200 

Pre-processing: 

- 16 channel filter bank 

- bandwidth: 120 Hz to 6000 Hz 

Training: 

- 4K bits per word 

- vocabulary: 50 or 150 words 

- built-in mini-floppy disk for template storage 

Recognition: 

- two-level connected word recognition algorithm 

- up to five words per phrase 

- 0.2 to 4.0 seconds per phrase 

Computation: 

- recognition result 300 ms from end of phrase 

Recognition accuracy: 

- 1.2% error rate on DSTr data (DPI00 results) 

Cost: 

$15000 

4.3 Level Building Algorithm 

The level building connected word recognition algorithm, proposed by Myers 

and Rabiner [19811, is another technique for optimizing the match between a 

sequence of reference patterns and an unknown phrase. It is thus functionally 

identical to both the one-pass algorithm and the two-level algorithm. 
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In this scheme the term 'level' refers to the number of words in a 

hypothesized sequence. So to recognize a sequence of n words, at least n levels 

must be built. The first level corresponds to hypothesizing that the unknown 

phrase consists of a single word, the second level corresponds to two word 

hypothesese etc. Conceptually, at each level, DTW is performed between all of 

the reference patterns and all of the test patterns, and the results from each level 

are taken as inputs to the DTW calculations of the next level. 

This means that at the end of the calculations for the first level, there will 

be associated with each frame of the test pattern a cumulative distance resulting 

from the best time registration path out of all of the references, and a pointer 

indicating which reference pattern it was. The time registration paths in this 

case will trace back to the first frame of the test pattern and the fust frame of 

a reference pattern. This information then provides the starting point for the 

next level, and the new time registration paths will trace back to the first level, 

and so on. 

The level building algorithm is computationally an order of magnitude more 

efficient than the two-level algorithm, but it has N times more dynamic 

programming minimizations than the one-pass algorithm (where N is the number 

of levels). However, like the two-level algorithm, the level building algorithm can 

easily find the best sequence of a given length. 

4.4 Hidden Markov Models 

The principle of hidden Markov modelling was in fact applied to connected 

word recognition before it was applied to isolated word recognition. Jelinek's 

team at IBM used HMMs to model phonetic speech segments, which could then 

be connected together to make words and then sentences [Jelinek et al 1982, Bahl 

et al 1983]. 

Exactly the same techniques may be applied to the connection of whole-word 

models, and the process is analogous to the one-pass algorithm described above. 

The advantage of this approach is that it becomes possible to train the word 

boundary information in context. However, the negative consequences of this 
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feature are that the combinatorics require a large amount of training data. 

EXAMPLE SYSTEM: Verbex 1800 

Pre-processing: 

- 32 channel filter bank 

- bandwidth: 300 Hz to 3000 Hz 

- autocorrelation coefficients 

- eight input channels 

Training: 

- multiple training passes 

- can train on word sequences 

- vocabulary: 10 - 39 words 

Recognition: 

- connected word recognition 

- hidden Markov models 

Recognition Accuracy: 

- 0.2% errors on DSTI isolated word data (best in the DSTI test) 

Cost: 

- $80000 

S. REAL-TIME CONSIDERATIONS 

Most of the algorithms discussed so far have been described without due 

regard to any short-cuts or other efficiency modifications. This section outlines 

some techniques which may be used to cut down the computational load and 

which may also affect the recognition performance (either for the better, or for 
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the worse}. For most of the algorithms, the introduction of efficiency usually 

means sacrificing optimality. Therefore, overall performance is often raised at the 

expense of making a few serious errors from time to time. 

5.1 Syntax 

As well as a definition of the words in the vocabulary, there will also be 

rules which govern the ordering of the words in most applications of automatic 

speech recognition. These rules define a grammar (or syntax) which may be used 

to reduce the computational requirement for an isolated or a connected word 

recognizer by limiting the number of alternative words at each point in a 

sentence. 

The implementation of syntax for an isolated word recognizer is very easy; 

after each word is recognized, the active vocabulary is switched according to the 

rules of the grammar. 

complicated, but it is 

For connected word recognition the process is more 

possible to modify the algorithms such that time 

registration paths only connect words if such a connection is legal in the syntax. 

In this situation the syntax becomes an integral part of the overall optimization 

process, hence connected word recognizers with this facility are able to find the 

best syntactically valid interpretation of a connected utterance. 

There are a number of ways of specifying a syntax, but the most common is 

in the form of a state transition diagram. Figure 21 shows a syntax for a voice 

controlled calculator. It can be seen that the diagram describes sentences such as 

"what is two plus four compute" and "put nine times alpha into beta compute". 

The overall vocabulary size is twenty-three, but the maximum number of words 

that need to be considered at any point is fourteen; in some places only one 

word is valid. The average number of legal words at any point is eight and this 

is known as the 'branching factor'. The ratio of branching factor to total 

vocabulary size gives an indication of the reduction in computation. 

A low branching factor will also increase recognition accuracy because the 

number of potential word confusions is reduced. (In general, variability means 

that recognition performance goes down as the number of choices goes up.) 
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However, -this gain III performance is balanced by the requirement that a user 

must be able to remember and use only allowable sequences of words. If a user 

says a word which is syntactically illegal, then a recognizer may be forced to 

misrecognize it, even if the word is in the overall vocabulary. 

5.2 Fixed Search Window 

In DTW based recognition algorithms the search for the optimal solution can 

often extend into regions which are extremely unlikely. Of course it is only by 

doing so, that the optimal solution can be guaranteed. Nevertheless, it is possible 

to achieve a reasonable reduction in computation, with only a small risk of 

reaching a non-optimal solution, by restricting the search in some way. 

One way of achieving this restriction is to impose a fixed search window on 

the DTW process. Typically this might take the form of a range restriction on 

the total amount of time registration slippage that is allowed at any point. 

Hence in the calculation of the distance and cumulative distance matrices for 

isolated word recognition, the indices would be limited such that li-jl < W, where 

i and j are the indices and W is the window width. Figure 22 illustrates the 

process (in this example the optimal path found in figure 15 has been lost). 

For isolated word recognition it is possible to speed up the computation by a 

factor of 1.6 with no degradation in recognition accuracy [Moore 19801. The 

same process may be applied to the two-level and the level building connected 

word recognition algorithms, and in these cases even larger savings in computation 

may be achieved. 

5.3 Beam Search 

A second technique for reducing the DTW search is not to have a fIxed 

search window, but to have a dynamic window which is controlled by the search 

process itself. This technique is known as 'beam search' and it is based on the 

principle that at any point during the DTW process it is possible to measure the 

value of the best solution (minimum distance or maximum probability) so far. 

This means that on the next iteration of the processs, the search can be limited 
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to solutions which lie within a given range of the current best solution. 

The beauty of this technique is that when there is ambiguity there will be a 

range of solutions all fairly close to each other and the beam will be wide, but 

when there is little ambiguity there will be few competing solutions and the beam 

will be narrow. Hence the scheme ensures that most of the computation takes 

place where it is most needed. Figure 23 illustrates the effect on a single DTW 

word match. 

The danger with the beam search technique is that if the beam is too 

narrow, then the optimal solution might be lost if there is a momentary bad fit 

in the data (after all, the main reason for using dynamic programming based 

algorithms is to exploit their property of overcoming local deficiencies). However, 

for isolated word recognition the technique is capable of speeding up computation 

by a factor of four without affecting recognition performance [Moore 1980]. 

5.4 Partial Traceback 

Partial traceback is another technique for exploiting the intermediate 

properties of a dynamic programming type search [Spohrer et al 1980J. It is 

based on the idea that by continually tracing back during the DTW process 

(rather than waiting until the end) it is possible to discover a point in the past 

to which all backtraces lead. When such a point is found, no amount of further 

processing will change the trajectory of the path up to that point. Hence, the 

results of the DTW process up to that point may be output. Figure 24 

illustrates the principle for an isolated word comparison. 

The technique is particularly relevant to connected word recognition. If 

partial traceback is used in this situation, it becomes possible to output the 

initial words in a long sentence before the sentence has finished being spoken. 

More importantly, it is possible to run the entire DTW process continuously; the 

DTW optimization can continually take in new data, and the results are output 

(after a delay) by means of partial traceback [Bridle et al 1983J. (The amount of 

delay between input and output in such a system will depend on the ambiguity 

present in the signal.) 



www.manaraa.com

• •• • • 0 ' 

., .,., • I ••• • •• I' 

: ~~::: .:::~~::~ 
• • • ••• • ... . . ... 111 

0: ' : :: :: :~ ; :~: 

t" " 
1" . 1. 

132 

, . .• 1'.' . . ............ ' ..... 
, .. ,. ..... . . 
-_ . ••• J., ' 
_ • _"1'1'" 

, " "., .. t • • 

" I' .. , ........ 1' ••• 
. ~ .•.... .,., . 

.. I ........ . . 1 • • 
• • • I r •• , •••• • • 

rl • • 

" ~~:~: ':H~' 

. 111,., • • , • 
• 111 ..... r. - • • . ••• ,1 •••. . . 
:::!~::: -. ~ : 
....... It .... . . 
•• 11 •••• 1111, • 

=:!~:~~!::::: 

. ... 

~:~~~. ::: . .1.... . I I ... 

.. .. 
. .. .. 

Figure 23 The effect of beam search on dynamic time warping. 



www.manaraa.com

.. , '" .... ·.·fII· .••. 
.. ~!~H~ . ::~: 

t ••••••• 

:~:~~:;: ; -
., ..... 111 • .,·.·· 
, .......... t 

:-::;::::u: 
• III" .... 111' ••• 
~~:::::;::: 
? ,. ••• III' •••• 
:::::::::a 
:: :: : =:: ::: .. " .... .. . 

. ".l1li • ........ ....... 
, ••• 11.' ........ . " .. ,.. ,. 
:; ::::: ... ... " 
:~::::: 
::!:~:: .. : ~H~ 

..... t - 4 ' . ' . " 

~ ~,.~; : : ~ . . .. . 
•• " .. .... "'111' . , ..... II .. . -.. .... ~: ~ 

~~"" ;" ""'II' .... " • •• ,.,. . . ..•••• 011.·· 
' •• 10 • • • • . . ......... .. 

~. ; .=~'~.~~~ 
~~::; : : : ;:~ : . : :!:: :, ::;; ~ 
••••• t. , . 

:~ ~ ~ ~~~~;~ : . . 
. , . .... . . , 

w r •• 111'1. I 111'., . ...... . 
0" ........... . , I ,. ••• 

. .,. .• h .!~ . o .~=;!: 

, ... . 
I ..... .. .... . , ... ... , .. .. ~ .. .. , ... . , , .. . .. 

~~!::: 
"' .... . .. ..... ". 
:H!:: 

l1li ••• r ' •••• I. 
•• iIi .... • ..... .. 

133 

• III' ........ ... 'II' . . 0' ' •• a ... • 111' 1 •• . .. . .... .1 •• .:~ ~: 
• '1' , .. .. 

:~::~H .t,,· ... •• - I 
~ 

.. . . , . . . 
'1.,·1 ... . .. ...... 
!!!!:: ,. ..... 

I.' I I ... 
::H!~ ,,".1111 ,. III .. .. .. • .. 

I ...... 

Figure 24 The effect of partial traceback on dynamic time warping. 



www.manaraa.com

134 

If partial traceback is combined with beam search, then it is even possible to 

output the identity of a spoken word before it has been completely uttered. This 

will occur when competing words are sufficiently different that the beam falls 

totally within only one word. Partial traceback can detect this occurrence and 

output the word. However, if the beam is too narrow in this situation, it is 

possible to have a recognizer discriminating between two similar words before the 

deciding sounds have occurred. 

EXAMPLE SYSTEM: Logica LOGOS 

Pre-processing: 

- 19 channel filter bank 

- 200 frames per second 

- variable rate coding 

Training: 

- embedded training (may be embedded in silence) 

- uses concept of 'wildcard' frame 

- storage for up to 2000 templates (minimum 641( bytes: 120 templates) 

Recognition: 

- continuous connected word recognizer 

- one-pass connected DTW algorithm 

- beam search 

- partial traceback 

- 5 second input buffer 

- syntax (up to 256 nodes) 

- number of active words: 20 (expandable up to 300 maximum) 

- keyword spotting 

Computation: 

- separate DP processors for section of total vocabulary 

- response: typically one or two words delay (depends on ambiguity) 
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Cost: 

-£ 35000 

8. FUTURE METHODS AND SYSTEMS 

The foregoing sections have concentrated on established techniques for 

automatic speech recognition. This section is intended to focus on some of the 

key issues relating to future methods and systems. 

From a user's point of view, perhaps the most immediate requirement is for 

systems with a high level of reliability for reasonable sized vocabularies regardless 

of whether they are isolated or connected word recognizers. Hence, work aimed 

at improving the discrimination power of recognizers is important. Second, users 

would ideally like not to have to spend too long training systems. Hence, work 

which is aimed at introducing more speech knowledge into systems is also 

important. 

6.1 More Useful Representations 

The beauty of the whole word pattern matching approach is that it provides 

a single (easy to characterize) interface between the speech patterns and the 

matching process. However, the performance of the approach ultimately depends 

on the exact nature of this interface and the quality of data that it uses. It can 

be seen from the preceding sections that nearly all of the recognizers employ a 

fairly coarse representation of the speech signal, usually equivalent to the analyzer 

section of a vocoder system. 

Obviously such representations are in some sense appropriate for speech 

recognition (it is possible to understand the re-synthesized speech), but in no 

sense could they be described as high quality. It is therefore possible that one 

bottleneck in the performance of current systems is this reliance on low data 

rates at the front-end. 
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The question as to what constitutes a high enough quality representation is 

open to some debate, but it is- reasonable to expect that work on auditory 

modelling has some relevan<;e [Lyon 1982). 

It might also be sensible to break away from the straightforward use of the 

'raw' speech pattern, and instead to re-address the question of a suitable low-level 

featural description. Such an approach is currently being pursued by Cole et al 

[1983) using statistical pattern recognition techniques. 

6.2 Better Models 

In section 3.4 it can be seen how DTW is not a single well defined 

algorithm, but rather a principle which underlies a collection of alternative options 

and implementations. A lot of research effort has been directed towards 

manipulating the various parameters in a DTW algorithm, but it has resulted in 

very few insights into the meaning of DTW as a model of speech variability. On 

the other hand, hidden Markov modelling does provide a useful theoretical 

framework, but to what extent is it a 'good' model? 

(It should be remembered that the purpose of a 'good' model is to take 

knowledge (perhaps in the form of training data) and 'generalize' that knowledge 

appropriately to assess previously unseen events. This can only be done by a 

proper understanding of the variabilities involved.) 

Work at RSRE on 'timescale variability analysis' [Moore et al 1982 and 

Russell et al 1983) is an example of introducing into a DTW processs, knowledge 

about the expected local variation in the temporal structure of speech patterns. 

Essentially, the techniques replaces global path constraints with probabalistieally 

conditioned local path constraints (it is analogous to training the state transition 

probabilities in an HMM). The result of providing DTW with a good model of 

temporal variability is that it is then better able to discriminate between different 

words, and is also able to discriminate between words where the difference is 

entirely temporal (something that normal DTW is unable to do). For example, 

using the 'locally constrained dynamic time warping' (LCDTW) algorithm, error 

rates for the two pronunciations of "close" (fklausj and jklauzj) were reduced 
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from 40% (using DTW) to 1.5% (using LCDTW). 

6.3 Improved Optimization 

Assuming it is possible to arrive at a 'good' model, it is still necessary to 

train it (to optimize its behaviour). Hidden Markov models have an advantage 

here because they employ an algorithm (the Baum-Welch) which is guaranteed to 

improve the behaviour of the model. However, such an optimization is not 

guaranteed to find the 'best' solution, merely to find the best local optimum. As 

a consequence, the apparently straightforward handle-turning optimization process, 

is in fact rather more complicated. 

In general, optimization techniques are becoming inherent to advanced 

automatic speech recognition algorithms. Hence, a better understanding of these 

processes is essential. An optimization technique which is able to avoid becoming 

trapped in local optima has been described by Kirkpatrick et al [1983J. In this 

scheme ideas based in statistical mechanics are used to implement an algorithm 

which simulates the cooling behaviour of a physical system: the annealing 

process. By introducing the notion of 'temperature' into an optimization problem, 

Kirkpatrick shows how the process can escape from local optima. 

6.4 More Speech Knowledge 

The performance of an automatic speech recognizer ultimately depends on the 

amount and quality of the training material. However, if the dimensionality of 

the representation is raised then recognizers are almost always going to be 

undertrained. It is therefore vital to know how the knowledge embedded in the 

training material can best be structured and hence utilized. One technique for 

obtaining this structured knowledge is to extract it from a human 'expert'. 

Unfortunately this raises questions about the usefulness of the knowledge thereby 

gained. 

In theory, it ought to be possible to extract a great deal of structural 

information from the speech signal itself (humans seem to do it). So the 

question is how to use available speech data to the maximum advantage. 
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The work on 'discriminative networks' at RSRE [Moore et al 1983} shows 

how some of the problems associated with undertraining may be avoided. The 

technique is directed at the problems which arise from attempting to distinguish 

between two very similar words using whole-word pattern matching. Such similar 

sounding words are characterized by having extremely localized differences (for 

example, "stalagmite" and "stalactite") which are swamped by the irrelevant 

variability contained in the rest of the patterns. 

If a recognizer was fully trained, then this variability would be characterized 

and it would be possible to optimally discriminate between the two words. 

However, since a recognizer is always undertrained (particularly if it has only one 

example of each word as a reference pattern), then it is possible to circumvent 

the undertraining by forcing the regions of the pattern which are irrelevant to the 

distinction to be identical. This is equivalent to deriving a network-type data 

structure for the two patterns (the discriminative network) which is able to focus 

the recognition process onto those regions of the patterns which are relevant to 

the distinction. The result is that the undertraining is supplemented with the 

a-priori knowledge that the two word patterns are supposed to be different. 

The RSRE algorithm is able to derive the network structure for any pair of 

words automatically, and the networks assume the shapes one would expect given 

the phonetic structure of the component words. Figure 25a illustrates the 

expected discriminative network for "stalagmite" /"stalactite", and figure 25b shows 

the speech pattern network derived by the technique. For the same pair of 

words, a 40% error rate for normal DTW was reduced to no errors using the 

network shown. 

6.5 Better Architectures 

All of the techniques described in this lecture tend to be a mixture of 

sequential and parallel processes. Dynamic programming is essentially a sequential 

process since a set of partial results is needed before the next iteration can 

proceed. On the other hand, distance calculations may all be done in parallel 

since one distance does not depend on another. Suitable processing architectures 
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are needed to exploit this mix, and in particular the parallelism that is possible. 

A specific example of DTW being implemented on a parallel processing 

architecture is described by Simpson and Roberts [19831. A highly parallel 

single-instruction multiple-data (SIMD) array signal processor with 32x32 processing 

elements and a 100 ns cycle time (the ICL distributed array processor: DAP) is 

shown to be capable of handling a 600 word vocabulary in real-time using the 

one-pass connected word recognition algorithm. 

'1. CONCLUSIONS 

This lecture has attempted to describe in some detail many of the techniques 

which underlie contemporary isolated and connected word recognition systems. 

The main conclusion is that, far from being a 'dead-end', whole-word pattern 

matching techniques provide a baseline from which to develop new methods and 

systems. 

The key to success in this area appears to be a proper separation between 

the knowledge which one might have about speech signals, the models in which 

one chooses to embody such knowledge, and the optimization techniques which are 

needed to load the knowledge into the models. 
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Systolic algorithm concept is introduced and three speech recognition algo
rithms are presented together with a systolic version. The first algorithm is 
based on the dynamic time warping algorithm which is applied directly on 
acoustic feature patterns. The second algorithm is the probabilistic matching 
algorithm which requires that the input sentence be preprocessed by a phonetic 
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Speech recognition is a computationally intensive task which can be han
dled on conventional architectures only for small vocabularies. The use of pipe
line and parallel architecture organizations increases the speed of the algo
rithms thus making realistic recognition of much larger vocabularies and 
broadening the range of application of vocal input. 

Over the past few years, numerous attempts to map speech recognition 
algorithms on parallel architectures or to design dedicated parallel architec
tures supporting speech tasks have been reported [1]. Advances in VLSI have 
shown to be a determinant factor in this evolution as VLSI makes it feasible to 
implement complex parallel architectures on a few integrated circuits. Among 
the various parallel organizations that have been considered for that purpose, 
systolic array is a particularly appealing structure. A systolic array [2] is a 
special-purpose architecture made out of simple processing elements organized 
as a regular network. Processors are locally connected, operate synchronously, 
and data circulate throughout the network in a pipeline fashion. 

Systolic arrays for speech recognition have been described recently. 
Weste, Burr and Ackland [3] present an orthogonal array of processors (40 x 40) 
that can support the dynamic time warping algorithm. The performances of this 
array permit real time isolated word recognition of a 20,000 word vocabulary. 
They also describe the VLSI implementation of the basic processor of this array. 
Yoder and Siegel [4] present various systolic schemes for dynamic time warping, 
including the use of a linear array. More recently, Feldman et al. [5] consider a 
wafer scale implementation of a two-dimensional systolic array for connected 
speech recognition. 

This paper is based on an effort undertaken since the end of 1980 at IRISA 
to exylore the potential of systolic architectures for connected speech recogni
tion l6]-[ 9]. The algorithm that was originally considered in [6] is a probabilistic 
matching algorithm based on Bahl and Jelinek linguistic decoder [10]. The main 
difference with the dynamic time warping approach is that the speech signal 
must be preprocessed before applying the recognition, in order to recognize 
the phonemes in the speech. Our purpose in this paper is to present and discuss 
various systolic algorithms for connected speech recognition. In section 2 the 
systolic architecture concept is defined and an example presented. Moreover, a 
systematic design approach is shown. Section 3 presents three algorithms for 
which a systolic solution has been proposed: the dynamic time warping algo
rithm, the probabilistic matching and the connected speech recognition 
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algorithm. In section 4. we describe a VLSI implementation of a continuous 
speech recognition systolic machine under developpement at IRISA. 

2. SYSTOUC ARCHITECTURE AND DESIGN METHODOLOGY 

2.1. Definition and example 
According to KUNG [2]. a systolic architecture is defined in the following 

way: 
- it is a special purpose parallel machine. made out of a small number of pro
cessor types (usually one); 
- processors are regularly and locally connected; 
- parallelism and pipeline processing are extensively used; 
- computation is carried out in a synchronous way. 

The convolution product is a good example to illustrate the systolic con
cept. Given a sequence x(O). x(l) . ...• x(i). . .. and coefficients 
w(O). w(1) • ...• w(K). the convolution algorithm consists in computing the 
sequence y(O). y(1) . .... y(i) . ... where y(i) is given by the following equa
tion 

y(i) = t w(k) x(i-k) (1) 
A: =0 

Fig. 1 shows a systolic architecture with three linearly connected processors 
(K = 2). For communication purpose. each cell is provided with four communi
cation ports. The x values flow from left to right on the top communication lines 
and the partially computed y values flow on the bottom communication lines. 
Note that a delay is inserted on the x lines. Each processor contains a 
coefficient w. At each step of the computation. each cell receives two values. 
namely an x value and a y value. Internally. the following calculation is done: 

y:= y + w x 

Then the two values x and y are sent out of the processor. 
It is easy to show that the last processor gives the right sequence y(i) 

assuming that K+l cycles before. the values x(i) and 0 were input on the first 
processor. 

The above example is just an illustration of what a systolic machine is and 
how it works. It should be pointed out that the systolic concept is not a new 
architecture type since numerous parallel machines have been designed before 
the systolic term was proposed. The main idea is to combine efficiently parallel 
and pipeline processing and to use such machines as peripherals of a host com
puter in order to speed-up some very time-consuming tasks. 

Moreover. the systolic idea is tightly related to the new types of applica
tions highlighted by the VLSI technology. Indeed. a systolic machine has to be 
custom-designed for a given task. With new design methodologies [11]. powerful 
and low design-cost integrated circuits can be fabricated. As explained in the 
following, the systoliC concept is well-suited to VLSI: 
- fast computation is obtained via parallelism instead of very fast technology; 
- regular structure reduces the design task because only a few types of cells or 

processors need to be designed and tested; 
- synchronisation problems are simplified due to local communications and 
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synchronous computation; 
- by allowing multiple use of the same data, pipelining reduces communication 
bandwidth with the host computer, a major issue with most of the parallel com
puters. 

2.2. Designing systolic algorithms 
In this section, it is shown how systolic algorithms can be designed in a sys

tematic way. The process of finding systolic arrays go through several steps 
that will be examplified on the convolution product. The first step, which unfor
tunately must be done by hand right now, consists in transforming the equations 
of the problem to be solved in such a way that they become a uniform recurrent 
system of equations. For some problems (like the convolution, or the matrix 
product), this is not very difficult. For other, in particular problems involving 
recursive computations, this may be very tricky. The second step consists in 
finding a timing-function for the uniform recurrent system. Finally, the last 
step consists in allocating the computations on a finite, regular array of proces
sors. At IRISA, a system named DIASTOL based on these ideas is being imple
mented. In the next sections, starting from the example of the convolution pro
duct, we will examine these three steps in turn. 

2.2.1. Transforming the equations 
A first transformation of (1) consists in expanding the L;. operator in such a 

way that only remain elementary calculations. These elementary calculations 
actually define the structure of the elementary cells of the systolic array. Equa
tion (1) may be rewritten as: 

'Ii, 0 ~ i ; Yk, 0 ~ k~ K: y(i,k) = y(i,k-l) + w{k) x{i-k) 

Vi: 0 ~ i, y(i,-l) =0 

(2) 

where y{i,k) are partial accumulated values for y{i). The basic idea is to con
sider these computations to be associated with points (i,k) of the plane, and 
more generally, to integer coordinate points of the Euclidean space. For any 
integer coordinate point (i,k) lying in the domain D = ~ O~i ; ~k~K J, we have 
to perform the elementary computation Yout = Yin + 'l.V.mxin' the result of which 
will be y(i,k) provided that Yin' 'UJ;,n, and Xin are given correct values y(i,k-l), 
x(i-k) andw(k). 

As we want to express the computation as a ftowgraph, it is necessary that 
each variable in (2) appear with all the indexes. We can see that w appears only 
with index k, and x only with index i-k. There are generally several ways to do 
that. Let us denote as W(i,k) the newvariablew. andX(i,k) the new variable x. 
Equation (2) may be replaced by: 
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Vi: 0 ~ i; Vk: 0 ~ k~ K 

y(i,k) = y(i,k-1) + W(i-l,k) X(i-l,k-1) 

W(i,k) = W(i-l,k) 

X(i,k) = X(i-l,k-1) 

with the following initial conditions: 

Vi, 0 ~ i: Vk, O~ k ~K: 

y(i,-l) = 0; W(-l,k) = w(k); X(i-l,-l) = x(i); X(-1,k-1) = 0 

(3) 

Such a system of recurrent equations is said to be uniform, since computation 
at point (i ,k) depends only on values computed at points that are obtained by a 
translation which does not depend on i or k [12]. This system may be 
represented by a graph such as that of Fig. 2. The nodes of this graph represent 
the computations to be achieved and the edges represent values that are to be 
transmitted from one node to another. 

2.2.2. Timing-functions 
The next step consists in finding a schedule for the computations, called a 

timjng-function. A timing-function is a integer mapping t (i ,k) which gives the 
time at which the computation associated with point (i,k) can occur. In DIAS
TOL, we only consider linear (or more exactly affine) functions for timing
functions. 

In [12], it is explained formally how one can find a timing-function. Intui
tively, there are two kinds of constraints to be considered. The first kind of con
straints has to deal with the eguations. If we want to be able to evaluate compu
tation associated with point (i,k), it is necessary that all the computations 
involving input arguments of the equation be already done. Consider equation 
(3), computation at point (i,k) depends on results of computations at points 
(i-10k), (i,k -1), and (i-l,k -1). Therefore we must have: 

t(i,k) > t(i-l,k) 

t(i,k) > t(i,k-1) 

t(i,k) > t(i-l,k-l) 

The second type of constraints on the timing-function is related to the 
domain. If we want to be able to implement the problem on a real machine, it is 
necessary that the computation start once, i.e, that t (i,k) have a minimum 
value over the domain of computation. Also there must be a bounded number of 
points to be computed simultaneously. 

The timing-function is not unique but obviously some solutions are better 
than others (see [12] for details). For instance in the example we are dealing 
with, we obtain the timing-function: 
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t(i,k) = i + k 

Fig. 3 shows the resulting schedule of the equations. 

2.2.3. Allocation function 
Once we have the schedule of the computations, it remains to map these 

computations on a finite machine, in a "systolic" way. A very convenient way to 
do so is to project the domain of computations along a direction defined by some 
conveniently chosen vector u. Each point of the resulting projected domain will 
represent a processor of the systolic architecture. Before giving more details 
about this step, consider again the convolution product example. A convenient 
way to project the domain (see Fig. 2), is to project it along the i-axis. In this 
way, all the pOints lying on lines parallel to the i-axis will be computed by the 
same processor. Since these points are computed at different times according 
to the timing-function we have chosen, a processor will never have more than a 
computation to do at a given time. The resulting architecture is the one already 
depicted on Fig. 1. To see how this architecture can be derived from the sys
tem, the timing-function, and the mapping, one can look at Fig. 3. Since the 
domain of computation has three lines parallel to the i-axis, there are only 
three processors. Let us call cell K the processor which takes care of the com
putations associated with pOints lying on line k = K. The data movement 
between the cells result from the data dependences shown on Fig. 2. 
Coefficients w stay on each processor. Values y and x go from processor 0 to 
processor 1 to processor 2. Note also that the x's move slower than the y's. 
This appears clearly by examining Fig. 2, since the x's move diagonally and 
therefore, reach a processor (Le., a line k =K) every other time. This is the rea
son why the x's have to be delayed between two processors. 

We denote as a(i.k} the function that tells which processor execute the 
computation associated with point (i ,k). This function is called the allocation 
function. 

2.3. Another Example 
To demonstrate the power of the previously explained method, and show 

that multiple solutions can be found for a specific problem. another systolic 
architecture for the convolution product is presented. 

From the equation (1). there is another way to derive a system of recurrent 
equations. The idea is to expand the 2: operator with the k indexes running from 
K to O. Equation (1) may be rewritten as: 

Vi: O~i: Vk: O~k~K 

y(i,k) = y(i,k+1) + W(i-l,k) X(i-l,k-1) 

W(i.k) = W(i-l.k) 

X(i.k) = X(i-1.k -1} 

with the following initial conditions: 

Vi, 0 ~ i; Vk, O~ k ~K: 



www.manaraa.com

151 

y(i,K+l) = 0; W(-l,k) = w(k); X(i-l,-l) = x(i); X(-l,k-l) = 0 

Fig. 4 shows the dependence graph for that case with the corresponding timing 
function. The systolic array shown on Fig, 5 is obtained by projection along the i 
axis. Note that x and y values are input in the array every two cycles therefore 
indicating that each processor is idle every other cycle. Such an array would be 
convenient to compute two convolutions in interleaved way. 

3. SYSTOIJC ALGORITIIMS FOR SPEECH RECOGNITION 
The systolic architecture concept presented above seems very attractive 

for applications such as signal processing as well as speech processing, In the 
following, we will see how this concept has already been used in the speech 
recognition area. We will also show that the systematic method for systolic 
architecture design can be applied very easily on realistic examples. In particu
lar, we will see that the definition of the allocation function can depend on some 
constraints linked to the application. 

Fig. B presents together the block-diagram of two connected speech recog
nition methods. The first one (Fig. BA) is based on the DTW algorithm, and the 
second one (Fig. BE) on a probabilistic matching algorithm. In both methods, 
the analog signal which results of an utterance is filtered, and acoustic features 
are extracted at constant intervals. Depending on the acoustic analysis method 
which is used, these features may be band energies, formant frequencies, cep
stral coefficients, or linear prediction coefficients. Each vector of features, 
called a frame. encodes usually 20ms of speech signal and contains B to 15 
values, Endpoints of the utterance are then determined by examining variations 
in the energy of the speech signal. At this point, the pronounced utterance is 
represented by a sequence of frames called the acoustic test pattern. Two 
different approaches are then possible. In the first one (Fig. BA), reference 
words are memorized as acoustic patterns. Distance measures between refer
ence words and every subsequence of the test pattern are calculated using the 
dynamic time warping algorithm. These distances are then combined in order to 
retrieve the original sentence. The other approach (Fig. BE) consists in prepro
cessing the acoustic test pattern in order to encode it as a string of phonemes 
called the phonetic test pattern. The reference words, also represented as 
strings of phonemes, are then matched against the phonetic test pattern result
ing in probabilities that are then used for the sentence recognition. 

From the point of view of recognition accuracy, the DTW approach is supe
rior to the probabilistic matching because the phonetic analysis that must be 
carried out before the probabilistic matching is a very inaccurate process. This 
explains why up to now only the DTW algorithm has been considered for practical 
application of speech recognition. However, in the long term, the second 
approach presents the two advantages of being less computation intensive and 
of needing less memory to store the reference words. 

In the following, we describe in more detail the algorithms underlying each 
of these approaches. The DTW algorithm is first presented. Then we describe 
the connected word recognition algorithm based on DTW. Finally, the probabilis~ 
tic matching algorithm is explained. 

3.1. The dynamic time warping algorithm 
The dynamic time warping algorithm is an application of the dynamic pro

gramming principle [10] to speech recognition. The follOwing description is 
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based essentially on the paper of Sakoe and Chiba [14]. 

3.1.1. Algorithm 
Let R = R(1) ... R(N) be a reference word and T = T(l) ... T(M) be a 

test utterance. Given a pattern R, (word or connected word sequence), we shall 
denote as R (i:j) = R (i) . . . R (j) the sub pattern of R from frame i to frame j 
and by IR I the number of frames of R. Let d(i,j) = II R(i)-T(j) II denote a 
distance between frame i of R and frame j of T. This distance may be the Che
bischev distance, the Euclidean distance, or the log spectral distance depending 
on the type of acoustic feature considered. 

Let C be a parametric curve of the plane defined by C(k) = (i(k),j(k». 
k=l ... K, where C(l) = (1,1) and C(K) = (N,M) (Fig.?). The dynamic time 
warping distance between Rand T is defined by: 

K 
I: d(c(k»). w(k) 

D (R . T) = mJn ;.;../1; =.....:l'--.K,-----; 

~ w(k) 
(4) 

A: =1 

where w (k) are weighting coefficients. 
Various recurrent schemes have been proposed to compute D(R, T) 

depending on restrictions made on the curve C. In the following, for sake of 
clarity. we will only consider a very simple recurrent scheme. Equation (4) may 
be solved by solving the following recurrence: 

r D ( i -1,j) + d ( i .j ) 
D(i,j) = mini D(i-l,j-1) + d(i,j) (5) 

D(i,j -1) + d(i,j) 

with the following initial conditions: 

D(O.O) = 0 : D(i,j) = 00 if i~O and j~l or if i~l andj~O 

Assuming that w (k) = 1, It results immediately that: 

D(R, T) = D("iM) 

Finally. a very common heuristics is that values D(i.j) are computed only for 
the points (i.j) which lie in the band defined by: 

li-jl~r 

where r is a given constant. This restriction avoids unreasonable stretching or 
compression of the reference pattern, and reduces the amount of computations 
to be carried out. 

3.1.2. Systolic algorithm 
The speech recognition algorithm that has been described has the property 

to be very regular in the sense that the basic computation to be executed at 
point (i,j) depends only on results provided by computations at neighboring 
points. This property makes it possible to implement the algorithms on systolic 
arrays. Fig. 8 shows the computation flow graph. The dependency graph for each 
point is depicted on Fig. 9. It shows that each point of the computation domain 
has to receive the previously computed D values as well as a reference frame R 
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and a test frame T. The distance value is then calculated and sent to the next 
points. The reference frame has to be sent to the next point to the right and the 
test frame is sent to the next point down. The timing function is: 

t (i,j) = i + j 

At this point, various systolic structure implementations are possible. The pur
pose of the next section is to explain how a two-dimensional array as well as a 
linear array can support this algorithm. 

3.1.3. 2-D systolic implementation 
The following presentation is based on [3]. The basic idea is to associate 

one processing element to the computation of each value D(i,j). Consider an 
array of processors denoted P",j connected as indicated by Fig. 10: Pi-.j has two 
input ports denoted Iv (vertical input) and III (horizontal input), and two output 
ports Ov and 0/1, (respectively vertical and horizontal output ports). Iv of Pi..j is 
connected to 0v of Pi - l •j and 1/1, is connected to ~ of Pi.j-l- Note that there is 
no diagonal connections since data flowing diagonallly have to be delayed during 
one systolic cycle before they are used (due to the timing function). Therefore. 
distance D(i-1,j -1) may be routed through Pi •j - l , and then to Pi .j . In order to 
illustrate the explanation of the following, we assume that each processor has 
the architecture depicted by Fig. 11. A set of registers memorize the partial 
calculations performed by the arithmetic unit. We assume that the 110 opera
tions are performed synchronously on the whole array. In the following, we suc
cessively describe the operation of the array on a single reference pattern and 
the pipeline mode. 

3.1.3.1. Single reference operation 
Consider the comparison between a reference pattern R and a test pattern 

T. The overall operation of the two-dimensional systolic array for the DTW algo
rithm is made on a diagonal basis. Assuming that the computation starts at 
time 0, then at time t, all the processors Pi .j such that i + j = t are active. In 
such a way, it can be easily checked that all the arguments needed for the com
putation of equation (5) have already been computed and have been routed 
correctly. The results D(N,j) are obtained by the processors of the bottom row: 
PH.; delivers D(N,j) at time N + j - l. 

In order to cope with variable length reference patterns, the array is 
dimensioned according to the longest reference word. Let Nm = max Nv be the 

l~v~V 

maximum number of frames of the reference words. The array has thus Nm 
rows and Nm + r columns. The process remains essentially the same if the 
length Nv of the reference is smaller than Nm . In such a case, the final values 
D(Nv,j) are computed by processors of row Nv , and must be transmitted to the 
bottom of the array. One way to solve this problem is to associate a flag with 
each reference frame R(i). This flag is set to 1 for i~Nv and set to 0 otherwise. 
A prooessor receiving this flag set to 1 from its left neighbor transmits the value 
D(i,j) instead of D(i-1.j) to its bottom neighbor, and +"" instead of D(i,j) to 
P(i+1.j+1). In such a way, the processors of the rows Nv ' Nv +1. etc., pro
pagate the final values D (Nv.j) to the bottom boundary of the array. 
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3.1.3.2. Pipelining the reference words 
Since only one diagonal of this network is active at a time for the computa

tion of the DTW algorithm, several computations may be pipelined into the array 
as illustrated on Fig. 12. The pipeline operation of the array allows all the dis
tances between any reference and any sub-l'attern of T to be computed very 
efficiently. A sUb-pattern T( b : b +Nm +r -1) that enters the top of the array 
remains constant, and the successive reference patterns Rv , 1~v~V enter the 
left part of the array. It can be seen that after a certain delay, each processor 
PN"".j of the bottom row of this array will output values D(Rv, T(b:b +j -1)) , for 
l~v~V, one during each systolic cycle. For word spotting purpose, when all the 
vocabulary has been matched against the test pattern, it remains to shift the 
test pattern one position to the left before repeating the process. In the follow
ing, we will refer to the process of comparing the whole vocabulary with a sub
pattern of the test utterance as a vocabulary cycle. 

3.1.4. I-D implementation 
Consider the comparison between a reference pattern R of N frames, and a 

test pattern T of M frames. We have to compute D(i,j) for (i,j) such that 
1~i~N, 1~j ~M and Ii -j I ~r. For the sake of simplicity, we assume r = 2q to 
be even. We have seen in section 3.1.2 that a simple way to order the calcula
tions is to have D(i,j) computed at time t(i,j) = i+j. A first linear systolic 
implementation is obtained by projecting the computation domain along the 
diagonal j =i. The architecture derived is made out of processing elements 
numbered Pi, that are two-way linearly connected as depicted on Fig. 13. Each 
processing element has two input ports denoted as Il (input from the left) and Ir 
(input from the right) and similarly two output ports, Oz and Or' The allocation 
scheme shows that processor Pic carries out all the computations D(i,j) such 
that i -j = k. However, this implementation has the drawback that each proces
sor is only working every other time. Another more interest"'f.. ~rmentation 

consists in having Pic compute the values D(i,j) such that l~ 2 (where I.xJ 
denotes the greatest integer lower than or equal to x) as depicted on Fig. 14 (a). 
In such a way, the linear array has r + 1 processors numbered P _q through Pq . 

3.1.4.1. Permanent regime 
Let us first examine the operation of each processor when permanent 

regime is attained. Pic executes two different cycles depending on whether 
i-j = 2k or i-j = 2k +l. 

Case 1: i-j = 2k (Fig. 14 (b» 
In this situation, Pic has already the value R (j) that was needed for the cal

culation of D(i-l,j) during the previous cycle. It contains also the value 
D(i-1,j -1) which was used two cycles before. Value T(i) is provided by proces
sor PHI and value T(i-1) is sent to processor Pic-I' Well shall refer to this cycle 
as a T-cycle (for T transmit cycle) later on. • 
Case2:i-j = 2k+1 (Fig. 14(c» 

Symmetrically, Pk contains already value T(i) obtained during the previous 
cycle, and D(i-l,j -1) obtained two cycles before. It remains to get R(j) from 
processor Pic-I' This cycle is called a R-cycle (for R transmit cycle). 
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3.1.4.2. Initialization and termination 
The initialization and termination process need to be examined carefully, 

since it is very important to keep the overall process regular: in particular, it is 
most important that data enter or leave the array only through the extremal 
processing elements, namely P -I{ and Pq , in such a way that the number of con
nections with the other parts of the system are minimized. 

During the initialization cycles, data enter the array in such a way that all 
the processing elements reach a consistent state and thus become able to per
form their first computation. This is achieved by performing particular initiali
zation cycles referred to as TI-cycle and RI-cycle. During a TI-cycle, processor 
Pic reads a test frame T(j) from PHI' and initialization values for the registers 
Dv , d.,;, Dr!. and Dp. During a RI -cycle the processor Pic reads a reference frame 
R(i) and initialization values for the registers Dh. and dh.' The initialization 
sequence consists of q -1 TJ-cycles and q RI -cycles. 

The termination process is carried out by making the final values D(N,j) 
move to processor P _q so that they may be output. After a processor has 
received the last reference frame R(N), the processor does not compute value 
D (i ,j) which is not significant any more, but instead propagates during the T
cycles the value D(i,j) it receives from its right neighbor. This termination 
scheme has the advantage that the data are output only by P _q and also that no 
extra hardware is needed to send the results. However. since the last result 
D(Nv ,Nv +r) is produced by Pq , 2r cycles are necessary before this result 
reaches P _q' introducing a significant overhead. Another way to proceed is to 
have each processor access a common output bus so that the results are sent 
directly to the outside. This is possible, since at a given time, at most one pro
cessor produces a final result. 

The number of processors required to implement this scheme is r + 1. The 
comparison between a reference Rv and a pattern T consists in r-l initializa
tion cycles and 2Nv +r -1 calculation cycles, assuming that the results are out
put directly by each processor. Therefore, the total number of systolic cycles 
for one comparison is 2(Nv +r). This means that the array has VX2(Nv +r) sys
tolic cycles to perform for each test frame. 

3.2. Probabilistic speech recognition 
As mentioned earlier, another way to recognize speech is to preprocess the 

input data in order to identify the phonemes that have been pronounced. This 
process, called phonetic analysis is independent of the vocabulary chosen for 
the application, and reduces by approximately a factor of 5 the amount of infor
mation to be processed later on. Fig. 15 gives an example of the result of the 
phonetic analysis. The ideal transcription of the French sentence "liste des con
necteurs" is presented together with the results of the £honetic analysis. as per
formed by the KEAL speech understanding system [15J. Each frame T(i) con
tains a few phoneme candidates (three to five usually). with each of which is 
attached a probability (the probabilities are not represented on the figure for 
the sake of clarity). We denote as x(i,k) the kth candidate phoneme of frame 
T(i) andp (i,k) the probability associated with this phoneme. 

3.2.1. Algorithm 
Let Rv be the words of the vocabulary, where the frames of Rv are now the 

phonemes of the ideal phonetic transcription of the word. The algorithm consists 
in retrieving the reference R that is most likely to have produced the test 
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pattern T. Such a process may be carried out by the DTW algorithm provided 
that a distance is defined between frames of the reference words and of the test 
utterance. However, the information lost during the phonetic analysis makes it 
impossible to achieve a high recognition accuracy in this way. 

Another way to proceed is to describe the behavior of the phonetic analyzer 
more accurately using the concept of Probabilistic Finite State Machine (PFSM) 
introduced by Bahl and Jelinek [10]. 

To each phoneme y is associated a PFSM (Fig. l6a) which describes how the 
phonetic analyzer is likely to deal with it. The PFSM has two states S(O) and 
S(1). Before reading y, it is in state S(O), and may choose between three pOSSi
bilities, namely insertion, confusion or omission. With each of these three pos
sibilities is associated a probability denoted respectively Pi (y), Pc (y), and 
Pg(y). If the insertion is chosen, the PFSM remains in state S(O), and produces 
a phonetic label x, with a conditional probability qi (x I y). In the case of a confu
sion, the PFSM reads the phoneme y and outputs x with conditional probability 
qc; (x Iy). Finally, if the omission is chosen, the PFSM skips the phoneme y with 
probability Po (y). In order for the model to be consistent, we must have the fol
lowing relationships for every phoneme y: 

p\(y) + Pc(Y) + Po(y) = 1 

~ q,(x Iy) = 1 
:c 

These probability distributions can be estimated from the actual results of the 
phonetic analyzer. 

From the elementary PFSM's associated with each individual phonemes, it 
is possible to modelize the behavior of the phonetic analysis when dealing with a 
reference word Rv = Rv(1) ... Rv(Nv) by concatenating the PFSM's associated 
to Rv (1), ... , Rv(Nv) (Fig. l6b). It is convenient to assume that every reference 
word ends with a special marker denoted ] whose PFSM is such that 
P, (]) = Pc (]) =0. This prevents the PFSM to produce any result when reading 
this special marker. 

The recognition process may be carried out from this model as follows. 
Consider the likelihood that a test pattern T has been produced by analyzing a 
given reference R = R(1) . ... . R(N). Let us denote by L(i,j) the probability for 
the PFSM to enter state S(i) after having produced T(l:j). The PFSM may enter 
S(i) after either inserting any candidate phoneme of T(i) before reading R(j), 
or after confusing R(j) with one of the candidate phoneme of T(i), or finally 
after skipping R(j). As a consequence, L(i,j) is given by the following 
recurrence equations: 

L(i,j) = ~(i,j) + Lc(i,j) + Lo(i,j) (6) 

Lt(i,j) = L(i,j-l) x Pi ( R(i+l» x ~ p(j ,k) qi( x(j,k) I R(i+l» (7) 
It; 

Lc(i,j) = L(i-l,j-l) x Pc( R(i» x ~p(j,k) qc( x(j,k) I R(i» 
It; 

(8) 
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(9) 

where 4(i,j), Lc (i,j) and Lo (i,j) denote respectively the probability for the 
PFSM to enter state S(i) after inserting T(j), confusing T(j) and R(i), or miss
ing R(i). Equation (6) is valid when l~i~N and l'5(,j~M. If we add the following 
conditions: 

Lc(i,O) = 0 if i>O 

Lc(O,j) = 0 if j>O 

Lc(O,O) = 1 

Lj(i,O) = 0 Vi 

Lo (O,j) = 0 Vj 

then (6) is still valid if i = 0 or j = O. 

(10) 

As in the case of the DTW algorithm, one can restrict the computation of 
L(i,j) to the points (i,j) which lie into a band of width r, i.e. such that 
li-jl~r. 

3.2.2. Systolic implementation 
In order to apply the design methodology described in section 2, the com

putation of the values L(i,j) must be represented as a regular computation flow 
graph. In the case of the previous algorithm, finding the flow graph is not 
straightforward. Indeed, equations 6, 7, 8 and 9 altogether show that computa
tion at point (i,j) (L(i,j» depends on neighboring points (i-1.j), (i-1.j-l), 
(i,j-l) (values L(i-l,j), L(i-l,j-l), L(i,j-l) and R(i), T(j». However this 
computation needs also the value R(i+1). Unfortunetly this does not agree with 
the flow graph approach since values R(i) and R(i+l) are needed for the point 
(i,j). To overcome this problem, computation at point (i,j) is done in a 
different way. Fig. 17 describes the dependency graph at point (i,j). Point (i,j) 
receives T(j+l) and La(i,j) from point (i-l,j), Lc(i,j) from (i-1.j-l), and 
finall.y R(i+1) and 4(i,j) from (i,j -1). Using equation (6), I?oint (i,j) computes 
L(i,j). Then using equations (7), (8) and (9), it computes Lo (i+ 1,j) which is sent 
together with T(j +1) to (i+l,j), then Lc (i+l,j +1) which is sent to (i+l,j +1), 
and finally .4(i,j+l) which is sent together with R(i+l) to (i,j+1). To summar
ize, Rand .4 flow horizontally, T and La flow vertically and finally Lc flows diago
nally. 

3.2.3. 2~ implementation 
The first systolic implementation of the algorithm is to assign a processor 

to each point (i,j). The overall operation of the array is similar to that of the 
DTW-algorithm. In particular, the pipe lining scheme remains the same. Consider 
the comparison between a reference pattern R containing N phonemes (includ
ing the end of word marker]) and a test pattern T having M frames. We assume 
that the last test frame T{Mj is composed uniquely of the end-of-word marker ]. 
with probability 1. The array needed to implement such a computation has N 
rows and M columns. Processors are numbered p;'J where ~i~N-l and 
OSj~M-1. 
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Note that this process still remains valid for processors at the boundaries of 
the array. As far as processors of the top row and the left column are con
cerned, equation (10) defines the initial values La, Lc and 4. that must enter 
these processors. Consider now processors PN -I,j for j <M -1. Since we assume 
that each reference word is terminated with a special marker ], and since 
Pc (]) = 0, we can deduce from (9) that: 

L(N,j) = Lo(N-l,j) (11) 

Therefore, the final value L (N,j) is delivered by PN,j on its Ov port. Finally, con
sider the processors P;"M-I of the right column. Provided that we have 
qc(]Jy) = qi(]Jy) = 0 for all phoneme y, it can be seen that PiM- I still delivers 
La (i+l,M-l) on its vertical output port Ov' Therefore, from (1'1), PN-I,M-I pro
vides L(N,M -1) on its Ov port. 

Note that this operation assumes that each processor knows the probabili
ties distributions Po' Pc, Pi as well as qo' qt,; and qi,' However, the pipelining 
scheme described in the previous section helps to reduce significantly the 
amount of memory required, since the test pattern remains unchanged during a 
whole vocabulary cycle, As a consequence, processor Pi,j receives the same 
frame T(j +1) during V consecutive systolic cycles. This suggests loading the 
processors with the probabilities qc(x Jy) and qi,(x Jy) only for the phonemes x 
which are in T(j + 1). Before every vocabulary cycle, these parameters are 
loaded into the first row of the array, then the second, etc., until the whole array 
is initialized. 

3.2.4. I-D implementation 
Although it is possible to use the diagonal scheme to implement the proba

bilistic matching algorithm, this scheme has the main drawback that the proba
bility values qc and qi have to be left-shifted every cycle, since the test frames 
tlow from right to left, 

A better scheme is to have processor Pj compute values L(i,j), 
(i = 1. '" ,N), in such a way that frame T(j) stays in Pj during a whole voca
bulary cycle, thus minimizing data transfers between processors. In this imple
mentation, called the row scheme. the linear array emulates successive rows of 
the two-dimensional array described in the previous section. Therefore, the 
linear array has M processors numbered Po through PM-I' Fig. 18 shows the 
linear array for the probabilistic matching algorithm, Solid arrows indicate the 
communication lines during a vocabulary cycle, On these lines values R, L;, and 
Lc flow from left to right. Dashed arrows indicate the communication lines for 
the T values. Indeed, as explained before, the T values do not need to move dur
ing a vocabulary cycle. They have to be left shifted before a new vocabulary 
cycle, 

To explain in more details the operation of the array, consider the com
parison between a reference pattern of N frames and a test pattern T; assume 
that processor Pj is already loaded with T(j + 1) and the probabilities qc (x J y) 
and qi,(x Jy) for x in T(j+l). During a basic cycle, Pj has to compute L(i,j) 
according to equations (6), (7), (8) and (9) (see Fig. 18). La (i,j), which has been 
computed by Pj during the previous cycle is already in Pj. Values Lc(i,j), 
R(i+l) and 4.(i,j) are obtained from Pj-I' Processor Pj computes then L(i,j), 
4.(i,j+l), Lc(i+l,j+l) and Lo (i+l,j), Values 4.(i,j+l) and R(i+l) are then sent 
to PJ+!- The probability Lt,;(i+l,j+l) has to stay in processor Pj, since Pj +! will 
need it only two cycles later. Instead, Lc(i,j+l) which was kept from the 
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previous cycle is sent to Pj + l' 

If we assume that the computation of L(O,O) is done at time 0, then proces
sor Pi computes L(i,j) at time i+j. Final results L(N,j) (0 ~ j ~ M) , are thus 
obtained respectively by Po, .. . ,Pj at time N +j. 

In the context of connected speech recognition, as we will see in section 3.3. 
these results need not to be sent outside the array. During a vocabulary cycle. 
processor Pj computes successively the probabilities L(N,j) for all the refer-
ence words of the vocabulary. Pj can therefore compute the maximum proba
bility over the whole vocabulary. 

The row scheme requires Nm +r + 1 processors, assuming that Nm is the 
maximum number of phonemes of the reference words (final marker excluded). 
The number of systolic cycles for a single comparison is 2(Nv +1) + r. Note how
ever that the vocabulary cycles may be overlapped, since as soon as a processor 
Pj ends a vocabulary cycle, it can start the next one. In such a way, Nv +1 
cycles are in fact needed for each comparison. Therefore, the array does 
Vx(N + 1) cycles for each test frame, where N denotes the average number of 
phonemes of the reference words. 

3.3. Connected speech recognition 
The DTW algorithm may be used either for isolated word recognition. or as a 

basis for connected word recognition. We shall only consider the later case here. 
Algorithms for connected word recognition have been described by Banatre et 
al. [7], Bridle et al. [16]. Myers and Rabiner [17], and Sakoe [18]. The algorithms 
described in [17] and [18] find the best matching connected word sequence con
sidering successively sequences of one word, then two words. etc. The results 
are then compared and the best connected word sequence is determined. In [7] 
and [16], the best connected word sequence is found in a single pass of the algo
rithm. In [14], the DTW algorithm and the connected word algorithm are 
merged, which results in a very efficient but memory consuming algorithm. In 
[7]. the DTW algorithm and the connected word algorithm are done separately. 
The following description is based on [7]. 

3.3.1. Algorithm 
Let T be the pattern resulting from the acoustic analysis of a sequence of 

words taken from a given vocabulary. We denote as V the number of reference 
words of the vocabulary. and denote as Rv the vth. reference word. The length of 
Rv is denoted as Nv . (The index v will be omitted when understood by the con
text). We call supel""reference and denote as RS the pattern obtained by the 
concatenation of a finite number of words R" of the vocabulary. II RS II denotes 
the number of words of W (not to be confused with I RS I. which is the number of 
frames of RS). 

With the above notations, the connected speech recognition algorithm con
sists. given a test sentence T. in finding the super-reference RS which minimizes 
the distance D(Rs • T). This process consists in two steps. First, one computes 
the quantity: 

D' = min D(RS , T) 
R-

Then one finds out the sequence of words whose concatenation achieves the dis
tance D'. 
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Let D+(b ,e) be the minimal distance between any reference word and a sub
pattern T(b :e) of T, i.e: 

D+(b,e) = min D(Rv,T(b:e» (12) 
l"v" V 

We denote as v+(b ,e) the number of the reference pattern which minimizes (12). 
Let DO(e) be the minimum distance between any super-reference and T(1:e), 
defined by: 

DO(e) = min D(RS , T( 1:e» 
RS 

Finally, let DOL(e) be the distance between a L-word length super-reference and 
T(l:e). Since the recurrence scheme of equation (5) is considered, a L-word 
super-reference can match only a pattern having at least L frames, As a conse
quence, we have: 

DO(e) = min D 'L(e) (13) 
1:&:.L-S;e 

On the other hand, DOL (e) obey the following recurrence equation: 

DOL(e) = min [DoL - 1(b-1) + D+(b,e») 
l-s;b"e 

(14) 

Substituting (14) into (13) gives: 

DO(e) = min !min[D·L-1(b-1) + D+(b,e»)j 
ISL"e I"" "e 

By inverting the two minimum operations, we obtain: 

D·(e) = minlrmin [DoL-1(b-l) + D+(b,e))j 
I"b-s;e 1~"8 

or, equivalently: 

D'(e) = min lr[min D "L-l(b -1) ) + D+(b ,e») 
1-s;1I"8 1 .. L-S;8 

which gives finally: 

(15) 

In this equation, the quantity D+(b ,e) may be obtained by applying the DTW algo
rithm given by equation (5). For a given value b and a given word Rv , a single 
application of the algorithm allows all the quantities D(Rv, T(b:e» to be com
puted for all values e lying in the interval [e I' e 2] where 

e 1 = b - 1 + Nv - r 

e 2 = b - 1 + Nv + r 

According to equation (12) a first minimization over the index v gives then the 
distance D+(b ,e). Finally, a second minimization over b by applying equation 
(15) gives the final result. 

In order to retrieve the string of reference word numbers that minimizes 
D'(c), it is sufficient to keep track during the calculation of (15) of the index 
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b+(e) which achieve the minimum as well as the number v+(b,e) of the word 
which achieves the minimum distance D+(b ,e). The string of word numbers 
v '(e) which minimizes D'(e) is then obtained by the following recurrence: 

v'(e) = v·( b+(e)). v+( b+(e) + 1 ,e) 

where x.y denotes the concatenation of strings x and y. 
The probabilistic model may be also adapted to connected speech recogni

tion. in a very similar way as explained previously for the DTW algorithm. Sup
pose now that T has been produced by the phonetic analysis of a super
reference RS. Denote as L '(e) the maximum probability of a super-reference 
RS given a test T(l:e), and as L+(b.e) the maximum probability of a single 
reference word given the test T(b.e). By a similar reasoning. L '(e) can be 
estimated by: 

L'(e) = maxfL'(b-l) x L+(b,e)] 
l~b:S:e l (16) 

This equation is very similar to equation (15). The recurrent scheme for retriev
ing the pronounced utterance is the same as explained previously. 

3.3.2. Systolic implementation 
The computation of D'(e) given by (15) can be computed in exactly e steps 

with the following iterative scheme: 

Uo(e) = +00 

with D'(O) initialized to O. It is then clear that D'(e)= U9 (e). Replacing D'(k -1) 
by Uk - 1 (k -1) in (17) gives: 

Uk(e) = min[uk- 1(e),Uk - 1(k-1) + D+(k.e)] 

The dependency graph for the calculation of terms Uk(e) is depicted on Fig. 19a. 
F1g. 19b is another representation of the same calculation but in this case data 
broadcasting has been removed. The timing function associated with this last 
flow graph is shown on Fig. 20. A systolic implementation is obtained by project
ing the calculation domain along a diagonal. 

The computation of D'(e) (defined by equation (15)) is carried out by a 
linear row of processors as depicted on Fig. 21. Every cell of the systolic array 
is structured as dis{>layed on Fig. 22. It contains an adder and a comparator. The 
cell computes U/c(e) using values Uk-1(e). Uk-1(k-1) and D+(k,e). Computation 
is achieved in the follOWing way. In a first step. the cell inputs D+(k.e). Uk-1(e) 
and UIc - 1(k -1). It computes Uk(e). In a second step. the cell outputs values 
Uk (e). Uk-1(k -1). 

3.3.3. Connected word recognition machine 
Functionnally. the overall organization of a connected word recognition DTW 

machine is depicted on Fig. 23. The machine is built with three main array: 
- the DTW array is used to compute distances between the reference patterns 
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and the test patterns sequences (values D(R", T(b :b +i -1», see Fig. 12); 
- the D+ array computes during a vocabulary cycle, the best distances and 

memorize the words associated with them, that is: 

D+(b,b+j-1) = min D(R",T(b:b+j-1» 
bW",V 

and v+(b:b +j -1); 
- the D# array is the CWR array described above. 

In such a way, each step of the minimization is carried out in turn by the 
processors of the bottom row, from the left to the right. Note that the D# array 
does not work according to the optimal timing function (Fig. 12). The reason is 
that the D+ values that are necessary for the computation (Fig. 22) are provided 
by the D+ array at the end of a vocabulary cycle. This shows that the computa
tion is not done in parallel since the processors are activated in turn from the 
left to the right. A real implementation would be more efficient if both the D+ 
and D- were merged in a single array. 

4. A VLSI DlPLKllENTATION CASE STUDY 

4.1. The API89 chip 
The following section is devoted to the structure of a special-purpose chip 

named APIB9 which implements one basic processor of the probabilistic match
ing systolic organization [9]. The design of this chip was made having in mind 
the following goals: 
- try to have the maximum speed by using special-purpose elements required 
by the algorithms; 
- reduce the layout space by implementing only the functions that are needed; 
- keep the processor general enough to support the different variations that are 

commonly used in the class of speech recognition methods presented above. 
- finally, choose a structure simple enough to avoid difficulties in designing and 

testing the chip. 

4.1.1. Overall organization and Control 
These ideas lead to the organization depicted by Fig. 24. The various ele

ments of the circuit are organized around a single bus. These elements are: 
a) Two input registers denoted as VR (vertical register) and HR (horizontal 

register); 
b) One output register OR; 
c) An Arithmetic Unit (AU) capable of performing addition, subtraction and 

incrementation on 16-bit values; the AU has an accumulator (ACC) and an input 
register (AR); 

d) An array of 16 general purpose registers R[O] to R[15]; 
e) A 60 12-bit word memory with a Memory Address Register (MAR), a 

Memory Read Register (MR) and a Memory Write Register (MW); 
f) A look-up table called the Z module, implemented using a PLA, for the 

summation of logarithms; this look-up table has an input register IZ and an out
put register OZ. 

All the registers and the data paths are 16-bit wide in order to provide 
enough precision for the calculations as well as fast 110. Operation of the pro
cessor is entirely synchronous and based on a two-phase nonoverlapping clock 
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scheme. These two phases are denoted as 9'1 and 9'2 in the following. 
The operation of the circuit is controlled by lO-bit micro-instructions which 

are generated outside the chip and expanded inside using a very simple control 
unit. Two types of micro-instructions have been defined as displayed on table 1. 
Microinstructions of the first type are executed Guring 9'1, and concern the 
transfers of data between the different modules thrc'.lgh the bus. Microinstruc
tions of the second type are synchronized on 9'2 and are used for 110, memory 
and arithmetic operations. In order to increase speed, instructions are latched 
in a pipeline register thus allowing instruction decoding and execution to over
lap. One instruction is thus executed every clock phase. 

4.1. 2. Description of the modules 
Three modules of the chip need to be explained in more detail. 

4.1.2.1. The memory 
The memory is organized in such a way that the parameters necessary for 

the probabilistic matching algorithm can be memorized. We have seen that a 
processor need to keep track of the probabilities qc (x IY) and q,(x IY). How
ever, since there are about thirty-five phonemes in a language as English or 
French, the amount of memory needed is too large to be reasonably imple
mented using the currently available technology. Hopefully, as explained in sec
tion 3.2.3., only a small amount of memory is used during a vocabulary cycle 
because only three phonemes x need to be considered at the same time. More
over, two simplifications of the model are made according to an earlier software 
implementation of the algorithm [19]. First of all. it is assumed that the proba
bility to insert a phoneme x is independent of the phonetic symbol y. Secondly, 
the probability to confuse a vowel and a consonant is assumed to be null. There
fore, for a given candidate phoneme x, it is only needed to memorize the quanti
ties q.,; (x I y) and qc (x I y) for phonemes y which are of the same type (consonant 
or vowel) as x. Since we consider only three candidate phoneme for each test 
frame, the memory contains only 60 12-bits words, each candidate phoneme 
being represented on 20 words (this value has been chosen since there are 20 
consonants in French). Each 12-bit word has two fields: a flag indicating the 
type of the phoneme, and a probability value coded on 11 bits. 

The instructions for the memory are given by table 1. The RM instruction 
has a particular effect: if the type of the phoneme which has been loaded into 
the memory address register MAR and the type of the phoneme memorized in 
the memory word addressed are identical, then the value contained in that 
memory is loaded into the memory read register MR. Otherwise, the number 
representing probability 0 is loaded. In such a way, only one cycle is required to 
read a value qc (x Iy) whatever the type of x and yare. Since the memory is 
implemented using dynamic memory cells, a particular instruction called RR is 
provided for memory refreshment. 

4.1.2.2. Arithmetic Unit 
The arithmetic Unit can perform addition, subtraction and incrementation 

as indicated on table 1. Two conditional instructions denoted as STR (star) and 
SBS (substar) are provided: STR complements the accumulator if the AU flag is 
set to 1; SBS subtract the AU input register to the ACC if the AU flag is set to 1. 
The AU flag is set to 1 when an arithmetic operation results in a negative 
number. As a consequence, the AU is capable to emulate comparison and 
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absolute value instructions. 

4.1.2.3. The Z module 
Since the probabilistic matching algorithm has to perform multiplications, 

and manipulate very small values, the probabilities are coded using radix-2 loga
rithms. However, examining formulas (7), (8), and (9) reveals that we have to 
perform the calculation of Log (a +b) given Log a and Log b. This problem has 
been solved in the following way. Let Z be the real mapping defined by: 

Z(t) = Log(l + 2') 

We have then: 

Log (a+b) = Log (a) + Z(Log b -Log a) = Log(b) + Z(Log a - Log b) 

Given the value of the function Z on the interval [ 0 , +00 ], it is possible to com
pute Log(a+b) from Log (a) and Log(b). Since the values are coded on 16 bits, 
it has been possible to implement the function Z using a PLA having only 128 
product terms, with a good accuracy. 

4.1.3. VIS.I design of the chip 
Two sets of chips have been fabricated. The first one using 4.5WNMOS tech

nology was fabricated by the French MPC (Multi Project Chip) organization. The 
second set was fabricated by MOSIS using 4p.-NMOS technology. The chip con
tains approximately 12,000 transistors and measures 5mm by 6mm. The chip is 
housed in a 64-pin package since 16-bit wide parallel ports are used. The pin out 
is the following: 

- 32 pins for the two input ports; 
- 16 pins for the output port; 
- 10 pins for the instructions; 
- 4 pins for power and clocks. 

Since the processor is microprogrammable, and since the inside decoding 
is reduced, access to the internal elements is relatively easy. A micro assembler 
has been written to compile tests programs and generate bit patterns for the 
circuit. Moreover, this micro-assembler is used for simulating the processor 
and thus generate a print out of the bit patterns expected on the output pads. 

A first run has been returned from fabrication and tested. The test has been 
carried out easily as expected. Most of the modules of the chip work correctly 
except some minor details. The basic clock cycle has been measured to be about 
700 ns for the 4.5J.L version. This is slower than estimated (500ns) due to a bus 
design error. A new version has recently been sent for fabrication. 

4.2. Example of systolic array implementation using API89 
As an example, we show in this section how the chip can be used to imple

ment the two-dimensional array for the probabilistic matching algorithm. Fig. 25 
depicts the interconnection of the array, for N = M = 3. We assume, moreover, 
that the full array is implemented. The operation of the array is fully synchro
nous. A control unit (CU) broadcasts the microinstructions to all the processors 
of the array, and provides a separate flow of microinstructions for the connected 
word recognition array. Control lines are indicated by dashed arrows in the 
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figure. Note that although each processor has only two input ports and one out
put port, all the logical connections needed can be emulated on this network, 
since the operation are synchronous. For example, vertical transmissions of 
data between processors are done by having all the processors load the output 
register with the value to be transmitted, and then read during the next cycle 
on the vertical input register. On the other hand, the left-to-right interconnec
tion between the processors of the bottom row (see Fig. 21) is needed only for 
the broadcasting of the values L -(b) to compute equation (16). This can be 
emulated by having these values enter the last row of the array, move from left
to-right on this row, and be sent to the bottom processors. 

A last remark that should be made concerns the synchronization of the con~ 
nected word recognition row. Since the references are pipelined in the array, 
the operation of processor P-j +1 is the same as the operation of P-j but occurs 
one cycle later. However. since each processor look for the maximum of the 
results L (N ,j) sent by the last row of the array, it is possible to align in time the 
connected word recognition array by having the network deliver values 0 when 
no significant comparison is done. 

5. CONCLUSION 
We have described several systolic arrays architectures which can imple

ment two basic connected speech recognition methods. 
The two-dimensional systolic array for the DTW algorithm leads to a 2.000 

processor network when the full array is implemented. and to 925 processors 
when only the band of processors Pi.; whith Ii - j I ~ r is implemented. This 
estimation is based on Nm = 40 and r = 10. Such a device would permit real
time recognition for a vocabulary of 5.000 words. based on a systolic cycle time 
of 4 microseconds. and a feature extraction interval of 20 milliseconds. This 
implementation is rather unrealistic for practical purpose due to the number of 
processors. It could only be considered if the number of processors were 
reduced by folding the computations. However. the control of this array would 
then be much more complicated. 

The probabilistic matching algorithm may be run on a two-dimensional 
array having 180 processors if the full array is implemented. and 104 processors 
if the band is implemented. This estimation is based on Nm = 10 and r = 4. 
Executed on the API89 chip. the systolic cycle time is s =50 microseconds. 
Based on this parameter and assuming an average phoneme duration of 100 mil
liseconds, vocabularies of up to 2000 words could be handled in real time. The 
probabilistic matching implementation would be a good candidate for wafer
scale integration as presented in [5]. 

The linear systolic arrays are more realistic. The DTW algorithm implemen
tation would permit a real time recognition of approximately 70 words, using 11 
processors. On the other hand, 15 processors would allow the recognition of 250 
words using the probabilistic matching algorithm. The difference of perfor
mances between these two systolic implementations comes from the fact that 
the initialization overhead is very significant in the case of the diagonal scheme. 
Although the row scheme could also be considered for the DTW algorithm, the 
number of processors would then be much higher, since Nm +r processors are 
needed. Both systolic arrays could be implemented on a single chip with the 
current available technology. 

The APIB9 VLSI chip has been presented and it has been shown how such a 
chip can be used as the basic processor of these architectures. This study 
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shows that there are many different ways to implement in parallel tasks such as 
connected speech recognition, even if one restricts oneself to a single type of 
architectures. Choosing between the ditlerent possibilities implies investigating 
in great details how the algorithm may be implemented, taking into considera· 
tion parameters such as the number of processors, the communications 
between the processors, and the complexity of the control. Our belief is that the 
new avenues opened by VLSI technology for special purpose hardware will 
become more and more practical. provided that more is known about the vari
ous ways to map an algorithm onto a parallel architecture. 
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1. INTRODUCTION 

The object of this paper is to present the inter-relationship between the 

state-of-the-art of system architecture research and speech recognition research. 

Our concern here is with the interplay of the recognition algorithms and the 

structure of the machines that execute them. We are therefore not concerned 

with the advancement of electronic technology per-se but with the possibilities of 

effectively exploiting the capabilities offered by such technology improvements. 

Better computer systems can only improve the c08t and the 8peed of a 

recognition system. We will immediately dismiss the cost issue, since it becomes 

relevant only in the context of a particular application and when a system with 

the correct accuracy has been demonstrated. Cost reduction is achieved by 

"simplifying" the algorithms while trying to keep accuracy constant; therefore, cost 

reduction is only meaningful when the required accuracy goal has already been 

achieved. 

As far as speed is concerned, one should ask: Why i8 8peed relevant? /8 it 

rea80nable to con8ider optimizing the 8peed of recognition 8Y8tem8 before having 

8ettled all the "8peech 8cience" i88ue8? The answer is a strong yes; it is indeed 

very important to be concerned with the speed of such systems in order to limit 

the turn-around time in the evaluation experiments since many are required 

simply to evaluate one version of a system. Moreover, the number of 

experiments required increases when the accuracy increases. For example, if one 

needs to measure the error rate with a confidence interval of 30% and a 

confidence level of 90%, 30 statistically independent errors are required. If a 

system has a .1% accuracy, it will need to process 30,000 sentences in order to 

get 30 errors. At 2 seconds per utterance, a real time system will take about 16 

hours for each experiment. When we consider that most changes in a system 

influence the behavior of other parts of the system, we see that the number of 

experiments required grows combinatorially. Past experience has shown that if a 

system does not run close to real time, the feedback is not quick enough to allow 

researchers to efficiently evaluate their solutions. For example, if the Hearsay II 
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system [l1J had been two orders of magnitude faster, much more insights could 

have been gained from the effort by performing experiments that had been 

specified but were never carried out because of lack of time. 

Section 2 describes the computational requirements of speech recognition 

systems. Two reasons prevent Section 2 from being as complete and conclusive 

as one might desire: first, the requirements of speech recognition systems change 

widely and in non-trivial ways when the task domain changes; second, there is no 

"correct" way to perform certain tasks and either worst-case analysis or highly 

speculative analysis are the only possible ways to proceed. Section 2 is structured 

according to one of the many possible system decompositions. It is virtually 

impossible at this point in time to prove or disprove that the speech recognition 

techniques suggested are the correct ones. However, unless some radically 

different approach IS invented (a possibility that will appear unlikely to anybody 

that has worked with the speech problem for some time), the techniques 

evaluated are representative of future recognition systems. 

Section 3 describes the classes of machines that might have an impact on 

speech recognition research. The classes considered are: language-oriented 

machines, production system machines, general-purpose parallel machines, 

massively parallel machines and task-oriented machines. For each class, the 

paper gives the underlying ideas, the expected performance of members of the 

class, and their typical applications. 

2. CHARACTERIZATION OF THE SPEECH RECOGNITION TASK 

The goal of this Section is to characterize the requirements of speech 

recognition systems from the point of view of the computer system that executes 

them. No matter what kind of system one considers, the computation required 

varies widely among the different components of the same system (e.g. signal 

processing vs. word hypothesization). The computation required is also influenced 

by the recognition task (number of words, grammar, etc.) that a system can deal 
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with. For example, although numeric computation is usually a significant part of 

the computation, as the complexity of the task increases, memory access 

operations become prevalent. As of now, there is no agreement on which 

modules will constitute a satisfactory speech recognition system. For the sake of 

this paper, the computation performed by a speech recognition system will be 

divided into four components: Parameter Extraction, Acoustic/Phonetic Analysis, 

Word Recognition, Sentence Recognition. A realistic, high performance speech 

recognition system will have many more modules and much more refined 

intermediate representations of partial results; nevertheless, the four modules 

chosen are likely to be representative of most of the computation. 

The computation characteristics are divided into three major categories: 

• The structure of the computation includes all the features of the 

computation that interact with the architecture of a computer system. For 

example, the kinds of operations performed more often or the behavior of 

the control-flow. 

• The amount of computation and storage are a (somewhat coarse) way of 

representing the raw requirements of a system. These characteristics depend 

at times on the size of the task a system can work with. 

• The available parallelism is a fundamental characteristic since, in many 

cases, the amount of computation is beyond the capabilities of sequential 

systems. 

The goal of creating a reasonable and meaningful picture is complicated by 

the fact that some of the requirements are influenced by the recognition task 

features and some of these features, like confusability of words, are hard to 

quantify. The parameters used in this paper are the number of vocabulary words 

and the word-grammar branching factor as defined by Goodman [14]. 

The characterization data presented in the paper is summarized in Tables 2-1 

and 2-2. Each table is divided in four sections corresponding to the four major 

components that we are considering: parameter extraction, acoustic/phonetic 
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analysis, word recognition and sentence recognition. The different categories in 

which each table is divided will become clear when the characteristics of the 

modules are explained. 

2.1 PARAMETER EXTRACTION 

Parameter extraction is the most tractable part of speech recognition because 

the computational problems it raises are shared by a large number of other, more 

mature applications and have therefore been studied in depth. With parameter 

extraction we indicate the initial transformations that are performed on the signal 

after it is sampled. This process is often identified with signal proces8ing since 

most of the techniques employed are derived from classic signal processing 

algorithms (e.g. Fast Fourier Transform). Some form of parameter extraction is 

used in all systems and for many years most of the activity in speech processing 

was exclusively concerned with this kind of processing. The two mostly used 

parameter extraction procedures are (in chronological order) filter banks [19J and 

Linear Predictive Coding [22J. Initially, filter bank processing was mainly 

performed with analogic techniques (analogic filter bank processing has resurfaced 

for economic reasons with single-chip filter bank analyzers [7]). In both cases, a 

number of additional parameters like zero crossing and amplitude are often 

computed. The FFT IS also often used in systems that need to extract very 

detailed information from the signal (e.g. FEATURE [8]). 

Parameter extraction algorithms are highly regular and their control pattern 

is mostly data independent. This characteristic opens the possibility of using 

computer systems that are optimized for a given sequence of operations and 

data-flow. In the simplest case, the optimal computer structure for parameter 

extraction will have data paths optimized for vector and matrix operations and 

pipelined multiply-add. In the most complex and effective case, the architecture 

will have multiple functional units and data paths tailored for a given algorithm. 

For example, the systolic WARP processor [31J is one of such machines. 
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CHARACTERISTICS 
Control Needs 

co~~ 
structure fast arithmetic 

integer floating 
point 

mostly regular 
PARAMETER 

EXTRACTION 

ACOUSTICI 

PHONETIC 

ANALYSIS 

WORD &; 

SENTENCE 

RECOGNITION 

CHARACTERISTIOS 

and yes no 
data 

independent 

both regular 
and data yes no 
dependent 

mostly data 
dependent no no 

amount of computation 
in MIPSS 

)~ number of words 
1,000 I 10,000 

branching factor 
COMPONENT low I high low I high 

PARAMETER 30 30 30 30 
EXTRACTION 

AOOUSTICI 

PHONETIC 

ANALYSIS 

WORD &; 

SENTENCE 

RECOGNITION 

.5 

3 

.5 

so to 
300 

.5 

15 

.5 

100 to 
1000 

Needs Complexity Data 
efficient of data memory 
symbolic structures bandwidth 

proceBBing 

low medium 
no 

no medium low 

yes high high 

amount of storage 

number of words 
1,000 10,000 

less than 
64K bytes 

leBS than 
64Kbytes 

.5M bytes 

leBS than 
64K bytes 

less than 
64Kbytes 

.oM bytes 

Figure 2-1 Tentative 8BBeBSment of the requirements a speech recognition 
system poses on a computer system 
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CHARACTERISTICS I parallelism 

COMP~ 
computation communication 

granularity number of parallel structure traffic 
size operations 

a few up to 0(100) a few times 
PARAMETER operators (in practice regular signal bandwidth 
EXTRACTION only a few) in samples/sec 

ACOUSTIC/ large a few 
PHONETIC regular low 
ANALYSIS medium 0 (number of 

phonemes) 

WORD large 0(10) 
SENTENCE random high 

RECOGNITION small O(words) 

Figure 2-2 Tentative assessment of the requirements a speech recognition 
system poses on a computer system (cont.) 

The most widely used primitives are integer arithmetic operators. Speech 

processing seldom requires more than 16 bits of precision (the input signal has a 

dynamic range of less than 11 bits). The reason why "floating point array 

processors" have been widely used for speech processing has to do with the ease 

of programmability that machines like the Floating Point Systems' AP-120B have 

when compared with most of the fixed point machines that have been built in 

the past. Therefore, recent technology improvements in integrated circuit design, 

that produced single chip processors like the Texas Instruments TMS32010, fulfill 

almost all the requirements of parameter extraction. 

As one might expect, parameter extraction algorithms do not need very 

efficient symbolic (e.g. list) processing operators. The data structures used are 

very simple, mainly arrays, but the amount of load/store operations is very high. 

Since the access patterns are regular but at times complicated (e.g. the shuffling 

of FFT's) the performance of a system executing parameter extraction procedures 

depends on its ability to efficiently perform (or avoid) address calculations. For 

example, the author has observed an increase by a factor of 5 in the performance 



www.manaraa.com

176 

of an implementation of the FFT algorithm on a TMS32010 when the address 

computation and some of the data shuffling have been improved by additional 

hardware. 

The amount of computation and storage is independent from the complexity 

of the task and ranges from about 1 to about 30 Millions of Instructions per 

Second of Speech (MIPSS). In some commercial systems, analog processing has 

been used in order to reduce cost but when detailed parametrization is required 

as in the Feature system [8], analog processing is not sufficient. The amount of 

memory that is necessary can be extremely small and is never much more than 

the number of samples that have to be kept around if non-local processing has to 

be performed (e.g. pitch tracking) or if the signal has to be re-examined in the 

context of some higher level constraint. The 64K byte figure in Table 2-1 is 

derived by assuming that a full 4-second-Iong utterance (16 bit values sampled at 

16KHz) is kept in memory for delayed re-examination. 

The parameter extraction computation can be easily parallelized because of 

its regular, predictable control and data-flow. When the control-flow is not data 

dependent, a very small granularity (e.g. "butterfly" operators) can be efficiently 

used. The degree of parallelism can also be very high, for instance in the order 

of hundreds of parallel operations. The communication structure can be quite 

complicated if the parallelism is pushed to its maximum, e.g. a fully parallel 

FFT. In practice, it is not necessary to exploit such parallelism because the 

necessary performance is already available from commercial high speed processors. 

In conclusion, speech recognition is not in the class of applications that one would 

define "signal processing intensive" by current standards. 
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2.2 PHONETIC ANALYZER 

The phonetic analyzer comprises all the techniques that transform the 

parametric representation of the input speech into a phonetic description of the 

utterance. This component is not present in small systems that perform a 

template matching directly at the parameter level. Typically, this component 

contains a mixture of arithmetic computation (e.g. computation of distance) and 

data-dependent, branching programs (e.g. segmentation algorithms). The typical 

data structures that are used in this component are neither too complex (they 

would require special instructions to work fast) nor too simple (a signal processing 

architecture could be used). Therefore, this component is the one that matches 

best with "general-purpose" architectures. 

The amount of computation and memory required are independent of the 

task characteristics and depend on the level of refinement necessary. For 

example, the Harpy segmenter and labeler used about .5 MIPSS and used less 

than 64K bytes of memory. Most current systems perform little or no phonetic 

analysis, relying on pattern matching of some kind of parameters, e.g. LPC 

coefficients. When feature extraction and classification techniques are used, as in 

the Feature system [8]' there is the possibility that a lot of computation be 

required if complex combinations of features that vary over time have to be 

evaluated. 

A limited amount of parallelism could be exploited in this module. For 

example, a number of "segment detectors" could work in parallel on the incoming 

data, each segment detector specialized in identifying a different set of acoustic 

characteristics. Each segment detector could be independent or cooperate very 

little with other segment detectors. A continuous speech acoustic front end that 

has these characteristics has never been built, and it is impossible to accurately 

evaluate the amount of computation involved since it will depend on how well 

one will be able to exploit the acoustic and phonetic knowledge. 
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2.3 WORD AND SENTENCE RECOGNITION 

The word and sentence recognition component is the biggest unknown, both 

from the speech science point of view and from the computation point of view. 

The analysis is complicated by the fact that the computational requirements are 

influenced in a complex way by the characteristics of the task domain. We will 

examine increasingly complex techiniques that are used to perform this task. 

Although different techniques have different capabilities and performance from the 

point of view of recognition accuracy, this paper will not comment on this issue. 

2.3.1 TEMPLATE MATCHING 

In most of the current commercial systems and in some research systems, 

word and sentence recognition is performed by some kind of template matching. 

In the simplest (and cheapest) systems the pattern matching is performed at the 

parametric level, e.g. using LPC parameters [25]; in other cases the template 

matching is performed at a higher level [13]. In all these instances, highly 

regular architectures can be devised. For example see [30,6]. 

2.3.2 SEARCH-INTENSIVE SYSTEMS 

For the purpose of this paper, search-intensive systems comprise all the 

systems that search a single large data structure in order to identify the "best 

matching" utterance. Usually these systems use an intermediate representation at 

the level of phonemes. Examples of this kind of systems are Harpy [21] and the 

IBM system [18]. 

One way to attack the analysis of the complexity of such systems is to 

extrapolate from the behavior of existing systems. For example, the Harpy 

system is a good example of a computationally very efficient, albeit limited 
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system. The analysis of the Harpy system that was performed in order to build 

a tailored architecture [4] showed that: 

• arithmetic operations were a small part of the total computation « 5%); 

• comparisons were also less than 10% of the total computationj 

• more than 50% of the time was spent in accessing data structures; 

• a static parallel decomposition was impossible because of the data dependent 

behavior of the algorithm. 

Since the performance is a function of the task, one should be concerned 

with how the requirements will change when the task complexity increases. In 

the case of the Harpy system, the branching factor of the grammar and the 

number of words were the main factors controlling the number of instructions per 

second of speech required. Table 2-1 shows how the performance of the Harpy 

system (expressed in Millions of Instructions per Second of Speech, MIPSS) is 

influenced by changes in the number of vocabulary words or in the branching 

factor. The data shown are from [I] and were corrected to take into account the 

improvements to the Harpy system (about one order of magnitude) that we were 

able to obtain after the publication of [I]. 

The table shows a factor of three increases in the amount of computation 

when the number of words increases by a factor of four (from approximately 1 

MIPSS and 250 words to 2.6 MIPSS and 1000 words). An increase of the static 

branching factor with the number of words (250) held constant caused an equal 

increase in the amount of computation required (.7 MIPSS to 6 MIPSS). 

In order to extrapolate the results of these experiments to a 1000-word 

vocabulary where any word can follow any other word, we have to multiply the 

amount of computation (2.6 MIPSS) by the branching factor ratio of the two 

tasks (1000 versus 9.5 for the AIX05 grammar). This brings us to about 270 

million instructions per second of speech. This should be considered an upper 

bound on the computational requirements of any system of this kind for such a 
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Grammar 

AISIO (Harpy) 

AIM12 (Harpy) 

AIX05 (Harpy) 

AIX05 (Hearsay II)) 

AIS06 (Harpy) 

AISIO (Harpy) 

AIS15 (Harpy) 

AIS30 (Harpy) 

AIS40 (Harpy) 

Table 2-1: 

MIPSS 

1 

1.7 

2.6 

60 

.73 

1 

1.4 

4.5 

6 

180 

Static branching Vocabulary size 

factor 

8.2 

10.5 

9.5 

9.5 

4.6 

8.2 

11.9 

33.3 

39.5 

250 

500 

1000 

1000 

250 

250 

250 

250 

250 

Effect of the vocabulary size and grammar branching factor on 

the performance of the Harpy and Hearsay II systems. The 

performance is measured in Millions of Instructions per Second 

of Speech (MIPSS) 

task. In practice, the use of filtering based on coarse phonetic features and 

prosodic patterns can reduce the effective vocabulary size by one to two orders of 

magnitude with a corresponding decrease in the amount of computation required. 

Better parameter extraction and phonetic transcription modules will also help in 

limiting the amount of computation required. 

will contribute to reduce the amount of 

In general, a number of factors 

computation required, and will 

counterbalance the growth of computational requirements caused by the increase 

in the vocabulary size and in the branching factor. 
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2.3.3 HYPOTHESIZE-AND-TEST SYSTEMS 

From table 2-1 we see that the Hearsay-IT system needed much more 

computation than Harpy on the same task. Part of this increase in the 

computation was due to the less constrained recognition paradigm of Hearsay-II. 

For example, Hearsay-II could start searching an utterance at many different 

places while Harpy always performed a left-to-right search. The remaining 

difference III the amount of computation is due to inefficiencies encountered in 

executing a parallel system on a single processor . We can expect all the systems 

that use the same paradigm to incur a similar overhead. On the other hand, a 

system like Hearsay-II could benefit from executing on a really parallel system as 

suggested in Section 3. 

Some more sophisticated algorithms that could exploit a large amount of 

parallelism have been proposed [10] but their effectiveness and their 

implement ability still remain to be demonstrated. 

3. COMPUTER SYSTEMS 

In this Section, we will briefly describe a few classes of machines that might 

have an impact on the improvement the computational cost effectiveness of the 

previously described speech recognition system components. Machine classes will 

be presented in the order of their increasing departure from conventional 

"general-purpose" single-processor systems. 

3.1 LANGUAGE-ORJENTED MACHINES 

When executing a given algorithm, the easiest most cost-effective way to 

increase the performance of a machine is to tailor the instruction set to the task 

at hand. This generates a new "general-purpose" machine that behaves much 
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better for some kinds of algorithms but can still be programmed to execute 

almost any kind of algorithm. This is at the basis of the current breed of LISP 

machines [15]. 

LISP machines make it reasonable to run large LISP based systems that 

require a lot of computation. For example, Boley [5] reports 3 to 12 fold 

improvement in speed by using a LISP machine instead of a "typical" LISP 

mainframe like the DECSystem-IO. However, the success of LISP machines might 

in part be due to other features like their "window" system and their user 

interface. 

LISP machines can be very good at executing some of the algorithms that 

might arise at the Word and Sentence Level (and sometimes at the Phonetic 

Analyzer Level), but their current value is more in the possibility to very quickly 

implement and test algorithms that is offered by a language like LISP when it is 

executed in a rich environment. This is currently one of the most important 

characteristics that a system for speech research should have. 

The importance of the environment and the language are demonstrated by 

fine speech tools like SPIRE [26] and ISP [20]. LISP machines are necessary for 

tools like SPIRE because of their very good programming and user interface 

environment and not because of their processor. As a matter of fact SPIRE 

needs an attached array processor to perform some of its functions at an 

acceptable speed. 

Prolog machines are also being proposed [32]. Since these efforts are trailing 

by a few years the similar LISP efforts, Prolog machines are not a possible 

research tool at this point. Some of the proposed parallel Prolog machines, if 

they will ever see the light, might be useful at the word and sentence level 

because of the processing power they will make available. 

In conclusion, AI-oriented high-level language architectures are likely to have 

an impact on speech research not as an ultimate engine for speech recognition 

but rather as a very effective research tool, especially if integrated with other 

specialized computation engines and task-oriented architectures. 
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3.2 PRODUCTION SYSTEM MACHINES 

Production Systems are widely used to build expert systems and to model 

intelligent behavior. In many respects, Production Systems could be a viable way 

of building speech recognition systems for which experts (e.g. spectrogram readers) 

channel their knowledge into rules that are executed by the system. It is hard 

to judge if this will ever be possible since the slow speed of execution of such 

systems has prohibited their use in domains requiring high performance and 

real-time response. This situation might change in the future if some ongoing 

research on machines for production systems [16, 23, 271 is successful. 

A production system program contains rules (productions) that are activated 

depending on whether some conditions, that are specified with the rule, are 

satisfied. Production systems are constantly executing a three phase algorithm: 

• match: the conditions are examined to identify the rules that can be 

executed; 

• conflict resolution: one of the executable productions is selected; 

• act: the production is executed, i.e. the memory is modified. 

These three phases must be executed sequentially and cannot be "unfolded" as 

one might do with certain kinds of loops, since it is hard to predict whether any 

computation in a given iteration will depend on the result of previous iterations 

or not. The second and third phases require very little computation and are 

never a problem. The first phase seems to contain a large amount of parallelism 

since each condition could in principle be examined in parallel. Recent analysis 

of existing systems [16, 231 has shown that the amount of parallelism available is 

limited by the fact that a small set of productions (a few tens) is affected by the 

act phase. This result, if common to all kinds of production systems, would put 

the burden of speeding-up production systems on the improvement of the 

performance of the processors used in the match phase. 
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In conclusion, production systems are currently not a viable solution for 

speech processing but could become interesting in the future if suitable 

architectures are designed and built. 

3.3 GENERAL-PURPOSE PARALLEL MACmNES 

The next logical step away from language-oriented systems is to exploit 

parallelism as much as possible. We have already seen (in production systems) 

that this might not be easy and that the expected parallelism might not be there 

at the expected level. It is convenient to distinguish between algorithm level 

parallelism and machine level parallelism. Algorithm level parallelism is explicitly 

expressed and managed by the application algorithm, while machine level 

parallelism is visible only at a level different from the algorithm level and is 

transparent to the application algorithm. This distinction is important because 

the former kind of parallelism requires a known parallel algorithm, while the 

latter can improve any kind of algorithm. 

If we exclude some massively parallel and hypothesize-and-test paradigms, 

most speech recognition paradigms are inherently non-parallel and even 

hypothesize-and-test can be truly parallel only if a satisfactory focus-of-attention 

policy is devised. It is therefore necessary to either restructure the algorithm in 

a parallel fashion that fits the characteristics of a given multiprocessor or to 

use a machine that can take advantage of the existing parallelism at a lower 

level. 

In the past, the most taxing problem in adapting an algorithm to a general 

purpose multiprocessor has been the high overhead required for the 

synchronization of tasks. This required the algorithm to be partitioned in fairly 

large components which, in turn, caused poor load sharing and, ultimately, a 

speed-up curve that would sharply deviate from the linear speed-up after more 

than a few processors were used in the system [4]. For example, speech 

algorithms had the worst behavior over a number of other application-oriented 
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algorithms when run on C.mmp and Cm* [24, 28J. 

One might ask if more modern multiprocessors would behave better. It is 

hard to tell at this point SInce no speech experiment has been performed on 

systems like the Denelcor's Heterogeneous Element Processor, the C-MU Parallel 

Processor Architecture (a shared memory multi-Vax system now being designed at 

C-MU in cooperation with an industrial partner) and the Ultracomputer [29J. 

Most likely these systems will require tess synchronization overhead but, because 

of their "general-purpose" structure, their performance will be less than it could 

be obtained with a task-oriented system [4J. 

Modern general-purpose multiprocessors might, on the other hand, become the 

best vehicle for speech research if an hypothesize-and-test paradigm with 

independent knowledge source is used. The reason is that in this case the 

recognition process is implemented as a set of independent processes (the 

knowledge sources) whose interconnections can be implemented with protocols that 

do not guarantee complete correctness of the communication and, therefore, can 

be very efficient. For example, this paradigm is suitable for a distributed system 

of processors connected by a local area network. 

Some machine level parallelism techniques like CPU pipelining and vector 

instructions do not make any use of the information contained In the 

representation of the algorithm and attain a limited parallelism regardless of the 

algorithm representation. If we describe an algorithm using a data-flow style 

language, the inherent parallelism is available all the way to the level of the 

atomic functions. Data-flow machines could efficiently exploit all this parallelism 

(if they have enough resources) and could therefore attain maximum effectiveness. 

Moreover, since computation resources in a data-flow machine are assigned while 

the machine is running, algorithms that have a control-flow that is highly data 

dependent can be dealt with as effectively as any other algorithm. For an 

in-depth treatment of data-flow machine issues see Arvind's article [2J. 
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In conclusion, the highly data-dependent behavior of some speech algorithms 

seems to indicate that general-purpose data-flow machines might be more 

appropriate for speech recognition than vonNeumann style multiprocessors. 

Unfortunately, working data-flow machines are an almost empty class at this time. 

If one desires to use existing general-purpose multiprocessors, the use of an 

hypothesize-and-test paradigm can make it possible to build a recognition system 

on a loosely connected set of processors. 

3.4 MASSIVEL Y PARALLEL MACHINES 

Parallelism, rather than raw speed, seems the way the brain gets most jobs 

done and speech recognition is obviously one of these jobs. Massively parallel 

architectures are machines with a very large number of (perhaps small) processing 

elements connected by some ad-hoc network. Most of the computation consists in 

sending information to other elements and combining the incoming information. 

The connections between the elements are part of the "program" or the 

"knowledge" present in the machine. 

These kinds of machines can be classified by the type of information that is 

passed among the elements: some simply exchange a marker [12], some exchange 

values [17], some exchange arbitrary messages [9]. Some components of a speech 

recognition system seem very suitable to massively parallel architectures. For 

example, word hypothesization could be performed by a system in which 

• elements represent words or phonemes, 

• phoneme-nodes are connected to word-nodes to represent the lexical 

knowledge, and 

• "phoneme likelihoods" (values) activate words which, in turn, inhibit each 

other (e.g. sending negative values). 
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Massively parallel algorithms are not here yet and neither are massively 

parallel machines. In some way, even if the effectiveness of massively parallel 

algorithms could be demonstrated on a small task, massively parallel algorithms 

would become useful only if a machine could be built to execute them effectively. 

3.5 TASK-ORIENTED MACHINES AND VLSI 

With the advent of Very Large Scale Integration (VLSI) comes 

the advent of the phrase: "With the advent of Very Large Scale 

Integration" (alasJ* 

The first part of this section dealt with the impact that various 

general-purpose architectures might have on the execution of speech algorithms. 

It is clear, though, that the current technology allows ultimate cost effectiveness 

to be obtained only if an architecture is specifically tailored to a given algorithm. 

Unfortunately, tailoring makes sense only when an algorithm has become well 

established. This does not mean that the algorithm cannot be further improved 

but simply that it has reached a satisfactory performance from the recognition 

accuracy standpoint. Among speech recognition components, parameter extraction 

techniques and template matching techniques are now sufficiently stable to be 

candidate for the design of dedicated architectures. Parameter extraction has 

been tackled by designing analog/digital components like filter banks [7J and 

specialized digital processors (e.g. LPC processors on a single chip). Template 

matching is dealt with in detail elsewhere in this book, suffice it to say that a 

regular and data-dependent control structure is the major characteristic of the 

Dynamic Programming algorithms that their systolic implementations exploit. 

*From Mike Foster's plan file, Carnegie-Mellon University VLSI Vax 
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Some work has been done by the author at Carnegie-Mellon University in 

designing and building an architecture for the Harpy recognition system. This 

experiment showed that tailoring can dramatically improve the cost-effectiveness of 

a system. The system (Harpy Machine [4]), using five Digital LSI-11 

multiprocessors executed in real time a task that a large mainframe like the 

Decsystem-lOjKL-lO executed in double real time. The author is now working on 

a set of VLSI chips [3] that will improve the performance of the Harpy Machine 

by about two orders of magnitude. These chips will be used in the word 

hypothesizer of a connected, speaker independent system now being designed at 

C-MU. The reason why in this particular case it is reasonable to design VLSI 

chips for a partially unsettled algorithm is that a set of tools is being built at 

the same time allowing us to quickly design similar chips once the speech 

algorithms have stabilized. 

VLSI, by itself, has little to do with improving the performance of speech 

recognition systems. The importance of VLSI stems from two facts: first, VLSI 

technology has made available fast signal processing devices that have satisfied all 

the requirements for signal processing including the case when an extremely high 

cost effectiveness is required (e.g. in a low performance, low cost application). 

Second, the possibility of designing and building a new architecture down to the 

logic circuit level (instead of the off-the-shelf microprocessor level) has given us 

the possibility to make real-time speech recognition in the context of complex 

tasks a reality. 

4. SUMMARY 

This paper has discussed the computational side of the speech recognition 

problem and described how some of the currently known computer architectures 

can influence the performance of speech recognition systems. Although speech 

recognition opinions take sometimes the flavor of articles of faith, too little is 

known about speech recognition to take any side and too little is known for the 
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computer architect to design the ultimate speech recognition machine. Enough is 

known, though, to build increasingly interesting and fast systems. 
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ABSTRACT 

This paper presents two VLSI architectures for the recognition of context-free 
languages based on Cocke-Y ounger-Kasami's and Earley's algorithms. By 
restricting the context-free grammar to be free of null rule, it is possible to 
implement the two algorithms on triangular shape VLSI systems. For both 
parsing algorithms, the designed VLSI systems are capable of recognizing a string 
of length n in 2n time units. Extensions to the recognition of regular tree 
languages and finite-state languages are also discussed. 

1. INTRODUCTION 

The speed of formal languages recognition is frequently considered to be 
important in many applications such as syntactic pattern recognition [8], artificial 
intelligence [9]. natural language processing [10]. syntax analysis of programming 
languages [111. pattern matching [121. etc. With the continuing advances in Very 
Large Scale Integration (VLSI) technology making circuitry smaller and faster, 
many processors can now be put together on a single chip and communicate with 
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each other at on-chip speeds. This offers the opportunity in building low-cost, 
high-performance, special-purpose multiprocessor architectures to aid in the rapid 
solution of sophisticated language recognition of general context-free languages. 
These languages are most commonly used in the mentioned areas and their 
recognition methods have been well studied [IJ. The recognition methods 
employed in this paper will be based on the Cocke-Younger-Kasami (CYK) 
algorithm and Earley's algorithm [IJ. Multiprocessing and pipelining techniques 
are used in the architectures to execute the algorithm in parallel and they will be 
presented in the following sections. 

The definition for context-free language is taken from [IJ. Nand E 
represent nonterminal and terminal sets, and V = N u E. Throughout this 
paper, Roman capitals A, B, ... denote elements of N while lower case a, b, ... 
are elements of E. Yet, n should always be the length of the string. Greek 
letters el, fJ, ... are elements of V*, however, A is specifically designated as the 
null or empty string. 

Definition 1. A context-free grammar is a 4-tuple 

G = (N, E, P, S) 

where N is the set of nonterminal symbols denoted by upper case letters, E is 
the set of terminal symbols denoted by lower case letters, P is the set of 
productions of the form A ---+ el, A f N, II f (N u E)*, and S is the start 
symbol. The grammar is said to be in Chomsky normal form if the productions 
are all of the form A ---+ BC or A ---+ a. If ll, fJ and '1 are strings of terminals 
and nonterminals, then llAfJ ---+ ll'1fJ if and only if A ---+ '1 is a production. The 
language generated by the grammar is the set of strings of terminals w such that 
S -4 w where -4 is the transitive closure of ---+. 

2. VLSI ARCmTECTURE FOR CONTEXT-FREE LANGUAGES 
RECOGNITION BY CYK ALGORITHM 

2.1 THE CYK ALGORITHM 

Two major methods for context-free language recognition are known [1,2]. 
The first was proposed independently by Cocke, Younger and Kasami [1]. It 
requires a grammar in Chomsky normal form [I] with no null rule. The second 
major method was developed by Earley [3] which will work for context-free 
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grammar of any form. Although the two algorithms appear to be quite different, 

both have the same time bound of O(n 3) for general context-free languages. 
Valiant [14] had shown that the computation performed by CYK algorithm can 
be related to boolean matrix multiplication, and came up with a recognizer 

running in time O(n2.81). This is the fastest known method on a sequential 
machine. About the same time, Kosaraju [15] showed that CYK algorithm can 
be used to recognize context-free languages in time O(n) on two-dimensional array 

automata, and in time O(n 2) on one-dimensional array automata. In this section, 
the CYK algorithm for context-free language recognition will be discussed. 

Algorithm 1 - CYK algorithm 

Let G = (N, E, P, S) be a context-free grammar in Chomsky normal form 
(with no null rule) and let w = a1a2 ... an' n ~ 1, be a string where, for 

1 S k S n, ak f E. Form the strictly upper-triangular (n + 1) X (n + 1) 

recognition matrix T as follows, where each element t. . is a subset of N and is 
l,j 

initially empty. (note: O-origin addressing convention is used for matrices). 

Begin 

End 

loopl:For 1 0 to n-l do 
t.. 1 {AIA-ta. 1 is in P}i 1,1+ 1+ 

loop2:For d = 2 to n do 
For i = 0 to nod do 

Begin 
j = d = ij 
t. . {Althere exists k, i + 1 S k S j-l 
I,j 

End 

such that A -t BC is in P for some 
B f t. k' C f t k .} 

1, ,j 

If the element to of the recognition matrix contains the start symbol S then ,n 
the string is accepted, otherwise the string is rejected. 
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2.2 THE VLSI IMPLEMENTATION 

The VLSI architecture for implementing the CYK algorithm in parallel can 
be divided into two parts: The preprocessing requirement and the hardware 
design. Preprocessing requirements are those tasks that are mostly input 
independent and therefore they are required to compute only once in the 
beginning. The hardware design is the part that uses the preprocesed results and 
performs the recognition in 2n time units. 

(A) Preprocessing requirement 

The preprocessing requirement has three parts. First, each distinct 
nonterminal of the grammar are numbered in ascending order. That is, if the 
nonterminal set is is, A} then the corresponding numbered nonterminal set will 
be {AI' A2} where Al = Sand A2 = A. Similarly, we also number the 

terminals of the grammar in this way. That is, if the terminal set is {b, a} 
then the corresponding numbered terminal set will be {aI' a2} where al = band 

a2 = a. With the production rules rewritten according to the numbered terminal 

and nonterminal sets, we can proceed to the next stage of the preprocessing 
requirement. 

The next stage of preprocessing requirement is to construct a coded 
production table for the hardware. Assume we have s distinct nonterminals in 
the grammar labeled AI' A2, ... ,As' then form the permutation of all possible 

nonterminal pairs in order (Le. AlAl,AlA2' ... , AlAs,A2Al' ... , A2As' ... , AsAl' 

A A ). Following this order, for each of these pairs find the set of 
s s 

nonterminals that derives that pair. For example, if Al -+ A2A3, and 

A 4 -+ A2A3 then the set of nonterminals corresponding to the pair A2A3 is 

{AlA4}. Coded each of these sets with a corresponding binary word or bit 

vector of length s, if A. is in the set then set bit i of the word to 1, otherwise 
1 

set it to O. For example, if the length of the binary word s is 4, the set 
{Al ,A4} will be coded as 1001. This bit vector representation will be used 

throughout the design. After completing the coding, we have a coded production 
table for the production matching operation. The table will then be loaded into 
the memory module of each cell in the architecture during the initialization phase. 
This will be further discussed when we come to the hardware design. 

The last preprocessing requirement is to code every input string according to 
a special format. This task is corresponding to loop 1 of the CYK algorithm. 
First we build a code table similar to the one before except we use terminals this 
time. That is, assume we have n terminals labeled al ,a2, ... , an then for each 
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terminal find, in the order of labels, the corresponding set of non-terminals that 
derives it and code the set the same way as before. Now we can use this table 
to code the input strings by using table scanning. This table scanning job can 
be done either in the host computer or it can be done on-the-fly by a simple 
content addressable memory [4] which contains this code table. 

Except the table scanning, all the other pre-processing tasks are input 
independent. Therefore, they are required to compute only once in the beginning 
and the rest of the recognition tasks will be carried out by the hardware. 

(B) Hardware design 

In order to implement the CYK algorithm efficiently in hardware, the VLSI 
structure is chosen to be the same as the strictly upper triangular recognition 
matrix T (See Figure 1). In this way, the data paths which are determined by 
the recognition matrix and the algorithm are explicitly incorporated in the 
processors' organization. On the other hand, data in each matrix element are 
represented by using a s-bit bit vector as described in the preprocessing tasks. In 
this way, the set membership representation of nonterminals can be done 
efficiently. The hardware design can be subdivided into two portions: The 
dataflow requirement and the functional units design. The dataflow requirement 
and the functional units design. The dataflow requirement takes care of the 
necessary data communications between cells whereas the functional units design 
handles the required operations on input data within a cell. 

a) Dataflow requirements 

The dataflow requirement is specified in loop2 of the CYK algorithm. It is 
easy to see that element (i,j) of the recognition matrix: needs to receive data from 
elements (i,k) and (k,j), for i < k < j. Observe also that there is no data 
dependency among the elements on a particular diagonal of the recognition 
matrix, therefore we can compute the elements on a diagonal in parallel if the 
required data for each element is arranged to arrive at the right moment. It 
happens that this dataflow requirement is the same as the optimal parentization 
problems in [5]. Therefore, we have adopted their algorithm for such a dataflow 
requirement. An informal description of the algorithm is given as follows: 

Let t = j-i be the distance between cell (i,j) and the boundary (See Figure 
1). The result of a cell at distance t will be ready at time 2t, the cell then 
transmits its result upwards and to the right. This result travels at a rate of 
one cell per time unit for t additional time units and then slows down to one 
cell in every two time units until the recognition is finished. Using this 
algorithm, a network with n(n+l)/2 cells will require 2n time units for the final 
result to be available. 

To implement such a dataflow pattern, the method used in [5] is also 
adopted. Referring to Figure 1, each cell has three types of channel for data 
communications between its neighbors. The first one is called the fast belt, it 
can transmit one data value at a rate of one cell per time unit. The second one 
is known as the slow belt, it can transmit one data value at a rate of one cell 
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in every two time units. The third one is a single bit control line, it is used for 
transmitting control signals between cells. There are five registers in each cell 
(See Figure 2): The accumulator (ACCUM.) where the current value of an entry 
of the recognition matrix is maintained, the horizontal fast (HORI.F AST) and 
vertical fast (VERT.FAST) registers for the implementation of the fast belts, and 
similarly the horizontal slow (HORI.SLOW) and vertical slow (VERT.SLOW) 
registers for slow belts implementation. Each of them is s-bits in length, where s 
is the number of distinct non-terminals in the grammar. In each time unit, the 
horizontal fast register receives data from its left neighbor while sending its old 
content to its right neighbor. On the other hand, the vertical fast register 
receives data from its neighbor below while sending its old content to its neighbor 
above. The horizontal slow and vertical slow registers behave exactly the same 
way except that the operation is done in two time units. That is, each of these 
registers has two stages. The incoming data enter the first stage, move the next 
stage at the next time unit and finally exit the cell at the following time unit. 
In each unit of time, a cell takes part in the belt motion as well as updating its 
accumulator. The new value of the accumulator is updated by the functional 
module FM (See figure 3) using the current contents of the five registers. This 
will be discussed later when we come to the functional units design. In addition, 
if the cell is at distance t away from the boundary, then at time 2t it will copy 
the contents of its accumulator into its fast horizontal and vertical registers. 
This is done by the data transfer module DTI. And finally, if it is at an even 
distance t = 2s from the boundary, then at time 3t/2 it will load the first stage 
of its horizontal (and vertical) slow register from the horizontal (resp. vertical) 
fast belt, ignoring its slow belts entirely. This is done by the data transfer 
module DT2. The timing of these transfers is controlled by the horizontal 
control line (HCTL) and vertical control line (VCTL) respectively. The 
accumulator to fast belt transfer (DTl) that occurs in cell (i,j) at time j-i is 
controlled by a rightward moving signal (HCTL) that moves at a rate of one cell 
every two time units. The fast to slow belt transfer (DT2) that occurs at time 
3(j-i)/2 is controlled by an upward moving signal (VCTL) that moves at a rate 
of two cells every three time units. Using this implementation, the dataflow 
requirement is fulfilled. 

b) Functional units design 

In this part of the discussion, the emphasis will be on the design of the 
Functional Module (FM) such that the architecture can produce the required 
recognition matrix. Other functional units such as data transfer modules and 
various registers can be easily designed by using a few pass transistors and/or 
buffers [4], therefore they will not be further discussed. 

The design of the Functional Module (FM) is shown in Figure 3. In order 
to simultaneously process data received from the register pair horizontal fast (HF) 
and Vertical Slow (VS) as well as the register pair horizontal slow (lIS) and 
vertical fast (VS), the Functional Module has employed two Permutation Modules 
(PMl and PM2). They are used to compute all possible right-hand side 
non-terminal pairs induced by data in each register pair (one PM for each pair). 
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Each Permutation Module simply performs the Boolean function a .. = b. AND c. 
ij I J 

for 1 ::::; i, j ::::; s, where s is the number of distinct non-terminals in the 
grammar. Each b. is from the input of its horizontal register whereas each c. is 

I I 

from its vertical register and the output a.. is arranged in the same order as the 
IJ 

storage of the coded production table. Since we are interested in the right hand 
side non-terminal pairs induced by both of the register pairs together, the output 
of the two PM's are union together by the upper OR module in Figure 3 to 

form a single output of s2 bit in length. That is, bit b .. of PMl is ORed with 
IJ 

the corresponding bit c.. of PM2 for 1 ::::; 
IJ 

i, j ::::; l Now, in order to find the 

corresponding left-hand side non-terminal set simultaneously for each non-terminal 
pair, a Memory Module (MM) which stored the coded production table is used. 

The Memory Module has s2 one-bit inputs and s2 s-bit outputs, it will output 
the content of the memory cell (s bits in length) if the input is one and output 
zeroes otherwise. The outputs of the upper OR Module are directly connected to 
the inputs of the Memory Module so that the production table scanning process 
can be done simultaneously. The results of the table scanning (i.e. the outputs 
of MM) are then union together with the content of the accumulator (from 
ACCIN) to form the s-bit final result. This is done by the lower OR module 
(See Figure 3) which ORed bit i of every s-bit output of MM and ACCIN 
together, for 1 ::::; i ::::; s. The output of the OR module (ACCOUT) will be sent 
to update the accumulator. In this way, the Functional Module in each cell will 
incorporate with the dataflow algorithm and produce the required recognition 
matrix in 2n time units. 

To initialize the system so that it can behave properly, one requires to store 
the coded production table into the MM of every cell, reset every register in each 
cell to zero and have the coded input string loaded in the first diagonal. The 
loading can be done by sharing input data lines in each cell during the 
initialization phase. Now, start every control signal at the boundary (See Figure 
1) and the architecture will run as desired. The next input string can be loaded 
overlappingly after the architecture has executed two time units and the next 
execution can start right after the completion of the present by properly resetting 
the registers and control signals. In this way, we can reduce the pin count by 
multiplexing input data lines and still can keep the system running continuously. 

What is left now is to check the output of cell (O,n) and see if its 
non-terminal set contains the start symbol. This can be done by creating a mask 
with bit i equals to one if A. is the start symbol and zero otherwise. We can 

I 

then ANDed the output of cell (O,n) with this mask and test for zero. If the 
result indicates non-zero, we accept the string, otherwise we reject it. These 
operations can be done by using another simple module, we call this the Decision 
Module (DM). A simple design for such module is shown in Figure 4. Bit i of 
the input (IN) from the output of cell (O,n) is ANDed with bit i of the mask, 
for l::::; ::::; s. The s bits result is then ORed together to form a single bit 
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output. If the bit is one then the string is accepted, otherwise the string is 
rejected. With this module connected to the output of cell (O,n) of the 
architecture, the system can provide a 'yes' or 'no' answer in every 2n time 
units. In this case, the mask of DM is required to be computed and loaded by 
the host computer in the initialization phase. 

A computer simulation has been carried out on the logic of the VLSI 
architecture. The purpose of this simulation is to make sure that the logic and 
the various timings of the architecture are designed correctly. The result of the 
simulation has demonstrated that the architecture is correctly designed to provide 
the recognition matrix in 2n time units [13J. 

A parse for a given input string is sometimes useful in syntactic pattern 
recognition because it provides the structural descriptions of the input string. 
Since the recognition matrix is generated during the recognition process, it is not 
hard to obtain a parse for an accepted input string by a simple parsing 
algorithm. 

3. VLSI ARCIDTECTURE FOR CONTEXT-FREE LANGUAGE 
RECOGNITION BY EARLEY'S ALGORITHM 

It is known that Earley's algorithm recognizes general context-free languages 

in time O(n 3). In 1976, Graham, et al [16J derived from Earley's algorithm a 
new on-line context-free language recognition algorithm. This algorithm allows an 

implementation with only O(n2/log n) operations on bit vectors of length n, or 

O(n 3/log n) operations on a RAM. In the same year, Weicker came up with a 
similar result [17J. These two recognition algorithms are the fastest ever known. 

Definition 2. For any rule A -+ a{3 in P we will call A -+ a . {3 a dotted rule. 
The dot "." is a symbol not found in V and is used as a marker to indicate the 
position. 

Definition 3. If X f V, the predecessors of X = {AlA -4 X, A f N}. 

Definition 3. The X operator. Let Q be a set of dotted rules, then 

Q X R = {A -+ aU{3 • 'YI A -+ a . U{3'Y f Q, {3 -4 >. and U f R}, when 
R £; V. 

Q X R = {A -~ aU{3 . 71 A -+ a . U{3'Y f Q, {3 -4 >. and U -+ 6. f R}, 
when R is a set of dotted rules. 

Definition 5. The * operator. Let Q and R be sets of dotted rules, then 
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Q * R = {A -+ aU{:J • 'YI A -+ a • U{:J'Y f. Q, {:J ~ >.. 

and there is some U' -+ o. in R such that U ~ U'}. 

Definition 6. Let R ~ V, define 

PREDICT(R) = {C -+ 'Y . olC -+ 'Yo is in P, 'Y ~ A, 

B ~ Crt for some B in R and some rt}. 

Graham, et al [16] rewrote Earley's algorithm in terms of dotted rule 
notation and the x, * operators. We called their algorithm the GHR algorithm 
as shown below: 

Algorithm 2 - GHR Algorithm 

to 0 = PREDICT( {S}) , 

for j = 1 to n do 

begin [build col. j, given cols. O,1, ... ,j-1] 

[Scanner:] 

for 0 :::; i :::; j-1 do 

t .. = t .. 1 X {a.} 
I,J I,J- J 

[Completer:] 

for k = j-1 downto 0 do 

for i = k-1 downto 0 do 

t. . = t. . u t. k X t k · 
I,J I,J I, ,J 

end 

[Predictor:] 

end 
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Algorithm 2 constructs a recognition matrix T = {to .}. All of its elements 
1,J 

are sets of dotted rules. .AB Graham et al claimed, this algorithm has several 
advantages. The straightforward control and data structures used make it 
conceptually simpler than Earley's version. This algorithm also combined many 
steps in the Earley's version into one step. Therefore, Algorithm 2 can be 

implemented so as to take O(n2/log n) bit vector steps on a bit vector machine 
3 

or O(n Ilog n) steps on a RAM [16]. 

3.1 A PARALLEL EARLEY'S ALGORITHM 

The computation in Algorithm 2 has one restriction, that is, no element of 
column j + 1 can be processed until t.. is processed, and hence until all 

J,J 
elements of column j are processed. This restriction is enforced by the Predictor, 
which ensures that A -+ Q • fi appears in the ith row only if S ~ a1 ... a.A. 

1 'Y 
Because of this restricted order in computation, Algorithm 2 can not be performed 
in parallel. However, it was mentioned by Graham [16] that with a weakened 
Predictor, Algorithm 2 will have the same form as CYK algorithm, except that 
the operation between elements is different. Based on this suggestion we 
developed a parallel version of Earley's algorithm and implemented it on a VLSI 
architecture. 

(A) Removal of predictor 

The function of the Predictor is to build up t .. in the jth column after 
J,J 

other elements in that column all have been processed. Suppose that we add 
some extra dotted rules which are not ordinarily there, the subsequent normal 
Scanner, Completer and Predictor operations may introduce extra dotted rules into 
columns to the right of j, but not above row j. In other words, this addition 
would have no effect on to ' so we still have a correct recognizer. As a matter ,n 
of fact, the Predictor can be replaced by the statement 

t. . = PREDICT(N) 
J,J 

and the correctness is preserved. In doing so, the characterization theorem [I} 
would be changed to "A -+ a . fi £ t .. if and only if a ~ a. 1 ... a.", which 

1,J 1+ J 
is analogous to the one for CYK algorithm. Since the diagonal elements would 
be all the same, independent of the input, they could be eliminated by a suitable 
combination of the operations X and '. Earley's algorithm without the Predictor 
restriction is called weakened Earley's algorithm. 
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(B) Operator « X » 

From Algorithm 2, we realized that eliminating the diagonal elements tk k , 
will also eliminate the * operation and leave the algorithm with only X 
operation. The X operation is the main computation for constructing the matrix 
elements and the * operation only applies to the element after it has completed 
its own computation and ready to assist the computations of other elements 
above it. Therefore, we can combine these two operations by attaching the * 
operator to a X operator. The formal definition is given below. Let Q and R 
be sets of dotted rules and Y = PREDICT(N), which replaces every central 
diagonal element. 

Q X • R = {A -+ aU[:J . ')'IA -+ a . U[:J')' f. Q, B ~ >. and U -+ 5. f. R} 

and 

{B -+ 5Ce . 111'1 = >., B -+ 5 . Ceq f. Y, and e ~ >., C .~ A} 

if R ~ V, then 

Q X • R = {A -+ aU[:J • ')'IA -+ a . U[:J')' f. Q, [:J ~ >., U f. R} 

and 

{B -+ 5Ce . 111')' = >., B -+ 5 . Cell f. Y, and xi ~ >., C ~ A} 

(C) The parallel weakened Earley's algorithm 

After removing the Predictor restriction and substituting the central diagonal 
elements, we can write the weakened Earley's algorithm in terms of .. X * » 

operator. 

Algorithm 3 - Weakened Earley's Algorithm 

for i = 1 to n do 

t. 1. = Y X • {a.} 
1- ,1 J 

for j = 2 to n do 

begin 

[Scanner:] 

for 0 ~ ~ j-2 do 
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t. . = t .. 1 x . {a.} 
I,J I,J- J 

[Completer:] 

for k = j-l downto 0 do 

for i = k-l downto 0 do 

t. . = t. . u t. k X • t.. i 
I,l I,j I, -k,.. 

end 

This algorithm builds up a (n+l)X(n+l) upper triangular matrix. Figure 5 
depicts the detailed computations of the algorithm. The Completer operation is 
to calculate t. . based on the information from t. k and tk .. Noted that for the 

I,j I, ,J 
maximum value k = j-l < j and i = k-l < k, t. k and t.. . are either to the 

I, -k,J 
left or below t... This characteristic suggests that we can construct the same 

I,j 
matrix by calculating one diagonal from another and moving from the central 
diagonal towards the upper right corner as described in the following algorithm. 

Algorithm. 4 

for i =:' 1 to n do in parallel 

t. l' = Y x . {a.} 
1- ,I 1 

for j = 2 to n do 

for i = 0 to n-j do in parallel 

begin 

[Scanner:] 

t.. . = t.. . 1 X • {a. .} 
1,1+ l 1,1+ J- 1+ J 

[Completer:] 

for k = 1 to j-l do in parallel 

t.. . = t.. . u t.. k X • t. k' . 
1,1+J 1,1+J 1,1+ 1+ ,1+J 

end 
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j=l j=2 
t(O,l) t(O,2) 
scan. scan. 
t(O,l)=Yx*{a\}- t(O,2) = t(O,!) x *{~} 

i=O compo ... 
t(O,2)=t(O,2)U 

t(O,1)x*t(1,2) 

t(1,2) 
i=l scan. 

t(1,2)=Yx*{~} 
.... 

i=2 

i=3 

j=3 
t(O,3) 
scan. 
t(O,3) =t(O,2) x * {a3} 
compo 
t(O,3)=t(O,3)U 

t(O,2)x*t(2,3) 
t(O,3)=t(O,3)U 

t(O,l)x *t( 1,3) 

t( 1,3) 
scan. 
t( 1,3) =t( 1,2) x * {a3} 
compo 
t(1,3)=t(I,3)U 

t(1,2)x*t(2,3) 

t(2,3) 
scan. 

j=4 
t(O,4) 
scan. 
t(O,4) =t(O,3)x *{ a4} 
compo ... t(O,4)=t(O,4)U 

t(O,3) x *t(3,4) 
t(O,"!l =t(O,4)U 

t(O,2)x*t(2,4) 
t(O,4)=t(O,4)U 

t(O,1)x*t(1,4) 
t(1,4) t 
scan . 
t( 1,4) =t(I,3) x *{ a4 

... compo 
t(I,4)=t(I,4)U 

t(I,3)x*t(3,4) 
t(I,4)=t(I,4)U 

t( 1,2) x *t(2,4) 
t(2,4) t 

L ... scan. 
I - t(2,4)=t(2,3)x*{a4} 

compo 
t(2,4)=t(2,4)U 

t(2,3)x*t(3,4) 
t(3,4) t 
scan. 

Fi gure 5, The computation of Weakened Earley's Algorithm (string length=4). 



www.manaraa.com

208 

Algorithm 4 constructs the same matrix as Algorithm 3 does. From this 
parallel algorithm, we can see that j loop executes n times. Within j loop, all 
the i and k can be executed in parallel, provided we have enough processors to 
do so, hence this algorithm has time complexity O(n). Although we can break 
down the computation into (n-j+2) x (j-1) independent subjobs for each j loop 
and execute the algorithm on a MIMD system [18}, yet it is not practical in real 
applications. For instance, if n = 50, when j = 20 the algorithm requries 608 
processors to work simultaneously and when j = 50, only one processor is 
required while other processors have to be idled. This is a tremendous waste. 
Of course we can ease this situation by setting a loop for k = 1 to j-1 instead 
of executing in parallel. This arrangement reduces the number of required 

processors in the sacrifice of increasing the time complexity to O(n2). Besides, 
the rather complicate data exchange may also degrade the performance of this 
algorithm. A more efficient and promising architecture is still needed. 

3.2 VLSI IMPLEMENTATION 

For Algorithm 3, a direct implementation is to use the same VLSI system as 
the one for the CYK algorithm. Algorithm 3 has a regular communication 
geometry as shown in Figure 5, and the data movement can be kept simple and 
regular but, each processor does not perform constant-time operations. 

(A) Constant-time operation 

In Algorithm 3, only " X • " operator was used. Recall the definition of " 
x . " we notice that X-production was considered in the operation, that is, we 
will add a dotted rule A -+ aUf3 . 'Y to the result instead of A -+ aU . f3'Y, 
provided f3 ..it X. Since the length of f3 is not known, we have to check the 
following symbols until the decision is made. This variable length of f3 makes 
the operation time different with different data and therefore hinders the 
implementation on a VLSI architecture. However, if we restrict our grammar to 
be X-free, the " X • " operation can easily be implemented on a dedicated 
hardware. 

(B) Data representation 

t ... 
I,J 

Bit vectors [20} are used to represent symbols III V and the matrix elements 
The former is easy to understand but the latter deserves further 

explanations. As we know, every matrix element t.. is a set of dotted rules. 
I,j 

Each dotted rule conveys the information about one production rule and its 
associated dot position. Since the production rules are given by the grammar, 
the matrix elements can only cover the dot position by bit vectors. For instance, 
one dotted rule with 5 symbols at its right hand side (RHS) and a dot between 
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the second and the third symbol can be reprresented by a 6-bit bit vector with a 
1 appears in the third bit and all the other bits are D's. The extra one bit is 
reserved for the end marker of the RHS. Consequently, the matrix elements t .. 

I,J 
can be represented by an array of bit vectors. The dimension of the array 
equals the number of the production rules. We call this array of bit vectors the 
cell data, which represents the matrix elements and is transferred from cell to cell 
through data buses. This data structure contains all the information we need 
and has equal length for all elements hence indicates the uniform data transfer. 

(C) Preprocessing 

During the preprocessing stage, there are some information needed to be put 
into the VLSI system in certain forms. The grammar is coded into group of bit 
vector arrays and every array represents one grammar rule. If V has Ie symbols 
and each rule has at most m RHS symbols, then the array has m+l bit vectors, 
each bit vector has k+l bits. We also need to convert all the left hand side 
(LHS) symbols and its corresponding predecessors into array of bit vectors. Let 
Y = PREDICT(N) be a set of dotted rules. Since Y only depends on grammar, 
it can be calculated and converted into r(m+l)-bit bit vectors before hand, where 
r is the number of productions. 

(D) The VLSI architecture 

The VLSI system is similar to the one shown in Figure 1 except one extra 
vertical INP bus was used here to transfer input symbols. Every cell has 
identical structure. The system is controlled under a system clock (or unit time). 
It is assumed that during each system unit time, every cell can finish its 
computation and every bus can complete its data transfer operation. There are 
three vertical buses. VFB (vertical fast bus), VSB ( vertical slow bus) and INP 
(input symbol bus), and two horizontal buses, HFB (horizontal fast bus) and HSB 
(horizontal slow bus). The fast buses and slow buses have the same transfer rate 
as discussed in the CYK algorithm, and INP bus has a transfer rate as that of a 
slow bus. 

Each cell has three functions, namely, computing the « X . » opeation, 
loading the data onto fast buses and shifting the data from the fast buses to the 
slow buses. The last two functions are essential for keeping the bus system work 
and are controlled by two control lines, VC (vertical control) and HC (horizontal 
control). The control lines only transfer one bit at a time. The transfer rate 
and functions of VC and HC are the same as the one mentioned in the previous 
section. 

Initially, every cell has the information about grammar rules, LHS symbols 
and its predecessors and Y. Start from time 1, the input symbols are read into 
the system in parallel, as shown in Figure 1, and all the data buses are sending 
D's except lIFB is loaded with Y. The control lines start to send 1 from the 
central diagonal cells (which are not physically exist). The system is running in 
a pipelining and multiprocessing fashion. After 2n unit times the tester receives 
data from cell (O,n) through HFB and after one more time unit. the t.eRt.er will 
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tell whether or not the input string can be generated by the grammar. The 
tester stores a mask which contains the information {S ~ a.IS ~ a € P} in 
terms of array of bit vectors. After it receives data from cell (O,n), a simple 
AND operation can give us the result. 

(E) Cell structure 

In this section, we will discuss the implementation of the main cell function, 
the computation of " X • ". Let us assume Q is a set of dotted rules. For 
convenience, when we say Rl of Q, we mean that Rl is an array of bit vectors 
and each vector represents the symbol appearing to the right of the dot, the dot 
position is specified by the cell data Q. Again, Y = PREDICT(N) and we can 
write Q X . R into an eight-step procedure. 

(1) Find the dotted rules which have the form U. ~ 6. from R and record the 
1 

union of the LHS symbols U = union of U. 'so 
1 

(2) Compare U with Rl of Q and mark the dotted rule whenever a match 
occurs. 

(3) Change Q by shifting those marked bit vectors one bit to the right and 
clear the other bit vectors. 

(4) Find the dotted rules which have the form U. ~ 6. from Q and record the 
1 

union of the LHS symbols U = union of U. 'so 
1 

(5) Find the predecessors for U. 
(6) Compare predecessors with Rl of Y and mark the dotted rule whenever a 

match occurs. 
(7) Change Y the same way as in step (3). 
(8) Q X • R = Y bit by bit ORing Q. 

Recall from Figure 5, the Scanner operation only applies to the data from the 
left neighbor cell t .. 1 X • b and the same data is used in Completer operation 

I,J-
as t .. 1 X • t. 1 .. 

I,J- J- ,J 
It is very easy to combine the Scanner with the Completer, 

that is, after forming the U for t .. l' we can OR U with the input symbol b 
I,J-

and the remaining calculations are still the same. Therefore, instead of building 
up a Scanner, we can modify step (1) as follows: 

(1) Find the dotted rules which have the form U. ~ 6. from R and record the 
1 

union of the LHS symbols and the INP, U = union of U:s and b. 
1 

The above procedure can be executed by the device shown in Figure 6. 
Figure 7 illustrates the architecture of the cell. In Figure 7, Operation 1 has the 
same structure as the one in Figure 6 while Operator 2 does not have the INP 
bus. The ACC will OR the results from both operators and itself. When the 
HC signal arrives, it will load the results to both HFB and VFB. 
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Following the parse extraction algorithm given in [IJ, it is possible to 
implement the algorithm on a processor array [21J. It is also possible to 
implement the minimum-distance error-correcting parse (a modified Earley's 
algorithm) on a VLSI system [21J. 

4. CONCLUDING REMARKS 

It is interesting to see that although the VLSI systems for CYK algorithm 
and Earley's algorithm use the same triangular matrix structure, the cell designs 
in each system are different. Notice that the VLSI system for CYK algorithm 
has simpler cell design; however, the algorithm requires the grammar to be 
convered into Chomsky normal form. On the other hand, a more complex cell 
design is required in the VLSI implementation for Earley's algorithm that, 
however, has imposed no specific restrictions on the form of the grammar. 

Since finite-state languages form a subset of context-free languages, the 
context-free parsing algorithms and hence the VLSI architectures described in 
Section 2 and Section 3 can also be used for the recognitin of finite-state 
languages. A more efficient method for finite-state language recognition, derived 
from the CYK algorithm, has recently been proposed. The VLSI architectur 
using this algorithm can be made to recognize a string of length n in constant 
time [13J. 

Tree languages are often used in sytactic pattern recognition for description 
of high dimensional patterns [8J. It has been shown that for a given regular tree 
grammar one can effectively construct an equivalent expansive tree grammar [8J, 
and this equivalent grammar will have a form of context-free grammar in 
Griebach normal form [IJ. Consequently, the VLSI architectures proposed in this 
paper can be employed for the recognition of regular tree languages. 

Since Earley's parsing algorithm (or modified Earley's algorithm) has been 
commonly used in many fields, the proposed VLSI architecture for Earley's 
algorithm should find applications also in error-correcting parsing and high 
dimensional language recognition [8,221. 
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IMPLEMENTATION OF AN ACOUSTICAL FRONT-END FOR SPEECH RECOGNITION 

ABSTRACT 
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via Reiss Roaoli, 274 - 10148 Torino, Italy 

We describe the implementation of a programmable general-purpose 
acoustical front-end for speech recognition; its design keeps into 
account, as an example, the algorithm of centisecond cepstrum extraction 
for an acoustical signal sampled at a maximum rate of 12.8 kHz. 

It consists of three boards, a master board controlled by a general 
purpose microprocessor, a slave board containing two digital signal pro
cessors working in parallel and an input/output analog board. 

The overall system is connected to a general-purpose minicomputer, 
which constitutes the system host. The implementation details and its 
rationale (mainly reprogrammability and performance) are outlined. In 
cases of more demanding applications, the system could also be hardware 
reconfigured with cascade or parallel sections. 

1.Introduction and requirements 

In a speech recognition system, techniques for feature extraction have 
unusual interest. The algorithms used [1,2] are typical not only of most 
speech recognition systems [3] but also of systems used for speaker reco
gnition [4] or certain kinds of speech coding systems [5]. that is. in 
systems using a parametric representation of speech. Nevertheless, the 
algorithms for features extraction. though computationally rather demand
ing in a real time system. are highly regular and data dependent and use 
regularly structured data [6]. These algorithms are mainly spectral esti
mations [7] or LPC (linear prediction coded) parameter extractions [8] or 
cepstrum estimations [9]. 

Today DSP (Digital Signal Processor) technology is appropriate to the 
real time implementation of parameter extraction algorithms for speech and 
several types of these processors are presently available [10]. However. 
given the present memory and speed limits of these components. in several 
cases a number of DSP's is needed in order to perform a more complex algo
rithm [11] or to perform various kinds of parameter extraction in paral
lel. Moreover. in some cases of speech recognition the capability of 
changing the set of extracted parameters. depending on the context. would 
be welcome. 

Taking these points into account. we implemented an acoustical front 
end for speeech recognition with the following requirements: 

- high performance in a reduced space using current technology 

NATO AS! Series. Vol. F16 
New Systems and Architectures for Automatic Speech 
Recognition and Synthesis. Edited bv R. De Mori and C. Y. Suen 
© Springer-Verlag Berlin Heidelberg 1985 
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- capability of being reprogrammed 

adequately modularized, so that every single block could also be used in 
different contexts, as described later. 

Another requirement is a general-purpose interface to the host com
puter. 

This acoustical front-end implements, as an example, the algorithm of 
cepstrum extraction via the FFT calculation followed by the DCT for an 
acoustical signal sampled at a maximum rate of 12.8 kHz. The computations 
are made over a window of 20 ms. with an overlap of 10 ms. This is use
ful from the recognition performance point of view [12], and exploits the 
computation and memory capability of the machine. 

2. Architectural basic choices 

The reprogrammability requirement (even in real time) leads to a soft
ware reconfigurable design and to a choice of a DSP based on an external 
program RAM. We chose the TMS320 [13] which, at the start of this pro
ject, was the only DSP with this characteristics. However, this DSP had 
other interesting characteristics,too, which have been exploited in many 
applications [14,15,16,17]. The basic configuration of the implementation 
is composed of three boards: 

- a master board controlled by a general-purpose processor (Z80 in this 
case) and connected with the host through a high speed serial link, 

- a slave board,containig two twins sections, each controlled by a TMS320, 

- an input-output analog board. 

This three board arrangement is the standard one, but, as 
before, it can be not satisfactory for more demanding jobs. 
cases we can rearrange the same boards, basically in two ways: 

- in "cascade" (or ripple) mode, 

- in "parallel" mode. 

we noted 
In these 

The "cascade mode" has n blocks; the first is fed by the analog input 
and feeds the second; the second feeds the third and so on, this mode is 
useful when several stages are needed for a more complex computation (e.g. 
formant extraction for the sake of spectral evaluation). In "parallel 
mode", the analog input feeds in parallel all blocks performing different 
independent computations (e.g. spectral coefficients and pitch 
extraction) . 

3. I.plementation details 

The master is controlled by an 8-bit general purpose microprocessor, 
and can interface to external devices with two serial links controlled by 
a SID (Serial Input Output): the first is used to communicate to the host 
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(initially for program downloading and then for parameter passing), the 
second is used to communicate to a local terminal, mainly for debugging 
purposes. Data interchange with the slaves is controlled by two parallel 
input/output ports. Each also transforms the 8-bit data of the master into 
16-bit data of the slave. A control register to the slaves issues suitable 
commands (e.g. for slave resetting). Direct data interchange is also 
possible from the A/D to the master and from the master to the D/A, al
though in the application implemented, this possibility is only used for 
initializing and debugging. A programmable counter (CTC) is used not only 
to control the speed of the serial line from/to host, but also to generate 
a programmable window for data acquisition. In fact, one input of the CTC 
is the sampling frequency, coming from the converter. The CTC and the 
surrounding logic divide this waveform by a programmable constant, 
generating two complementary square wave outputs, sent to slave 1 and 
slave 2, respectively, where the program synchronizes itself with the 
rising edge of this signal. In this way a programmable window rate (in 
every case the 50% overlap of windows is fixed) is obtained. 

The slave board contains two twin TMS320. Since our goal was to build 
an efficient real time general purpose acoustical front end, we had to 
increase the basic input and memory capabilities of the signal processor. 
Regarding the first point, we note that the TMS320 has two basic input 
capabilities: an input line for interrupt and an input line (BIO) for 
sensing another status via a special conditional skip instruction, named 
BIOZ. Given that in our application there are many interrupting con
ditions, for example data ready from converter, data accepted by master, 
special signalling from master etc., all interrupts are suitably put in OR 
and then are polled by the BIO input via a multiplexer addressed by the 
program. This function is quite simple from the hardware point of view 
and introduces some overhead, though acceptable, as we will see later, in 
software implementation. 

For the second pont, we augmented the basic program memory capabili
ties of the TMS320, since we relied fundamentally on software memory 
intensive techniques for giving general purpose real time efficiency to 
our system. In fact where needed we used "in line coding" [21] for 
increasing the efficiency of program control and "table look up" for 
increasing the efficiency of some address and data computations. These 
techniques are of course memory intensive. 

In fact we chose not to add special purpose hardware to the system 
(e.g. for program control or address computation) for FFT only, since the 
front-end had to be general-purpose. 

For our reference application, 4K words of program memory were not 
enough; hence the standard configuration was increased via bank switching. 
In fact, two output instructions select bank 1 and bank 2 of program 
memory respectively; however the first lK of program memory is indepen
dently accessed by this selection and constitutes the bank 0 of program 
memory: in this way 1K of program memory is lost, but a flexible mailbox 
area is obtained for interchanging data between programs, independently of 
program page. This common area contains also, in a small ROM,· the 
bootstrap. Bank 0 can allocate the bootstrap, interrupt programs and data 
to be exchanged between programs. In the first location of bank 1 and bank 
2 we write the main program, which implements a loop. In this main program 
we can jump from page 1 to page 2 and vice versa, issuing suitable bank 
switching output instructions. Of course, we jump to the same address of 
the opposite page, for example from 4FF (hexadecimal) address in bank 2 to 
4FF (hexadecimal) address in bank 1. At appropriate points of the main 
program, it jumps to a suitable subroutine, allocated of course in the 
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same page (for example the routine for FFT computation). In practice the 
subroutines are allocated into pages 1 and 2, and then the main program is 
suitably written so as to allocate the calls to subroutines in the same 
page of the subroutine. 

Details of the converter board are as follows. Strictly speaking, only 
the A/D section is needed for recognition purpose, although a D/A can be 
useful for prompting messages and diagnostic purposes. Furthermore it adds 
generality to the architecture for eventual uses in speech coding applica
tions (analysis,synthesis). The board has multiple inputs and outputs for 
various purposes (microphone, loudspeaker, telephone) and is software 
reconfigurable via two command registers. By suitably loading these 
registers, various kind of transfers can be programmed, for example the 
digital loop, the A/D-D/A loop, the D/A-A/D loop. We can also program the 
sampling rate (8kHz. 10kHz., 12.8 kHz.), the input and output atte
nuation, and other options. 

4. Prograaaing and perforaance 

After initial loading and testing, the master sends the calculated 
coefficients to the host; in our application we calculate 18 cepstral 
coefficients each centisecond frame. Given that each coefficient is repre
sented with a word of 16 bits, we have to transmit to the host a net flux 
of 28.8 Kbit/s. over the serial link. 

The computations performed by a slave can be distinguished into 
input/output programs, done in interrupt mode, and all the remaining com
putations, done in background mode. Two rotating buffers allocated in 
program memory are used for inputting samples: in fact, in interrupt mode 
one buffer is filled with samples which comprise frame n while at the same 
time the background program uses the contents of the other buffer which 
contains samples of frame n-2 in order to calculate cepstral coefficients. 
Of course, at the end of the frame, the contents of the buffer used for 
computation are not needed anymore, so this buffer becomes the input 
buffer for frame n+2 and the contents of the other buffer with frame n is 
used in background mode for computing cepstral coefficients. 

Background programs perform: 

transfer of the buffer chosen for computing cepstral coefficients into 
a common buffer, with pre-emphasis, 

Hamming windowing of these data, 

256 point complex FFT transform, 

modulus computation, 

band grouping, 

logarithm, 

direct cosine transform (OCT). 

Given the data memory constraints of the TMS320, we performed the 256 
point complex FFT transform by suitably combining 64 points complex FFT 
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transforms (in fact this is the maximum block that can be contained in 144 
words data memory); the elementary butterfly is a 4-points butterfly [18] 
(see also [19] for an example of efficient implementation on the TMS320). 

We calculate logarithms via table look up, that is, the integer part 
of the logarithm is determined by searching for the most significant "1" 
in the binary word [20]; then the fractional part is calculated by using 
the remaining bits, suitably aligned, as addresses to a transform table, 
which in our case is composed of 128 entries. 

Interrupt programs perform the input of the data and the output of 
calculated coefficients. There are also routines for handling special 
messages for master to host an vice-versa. 

Fig.1 and Fig.2, respectively, summarizes program memory allocation and 
time performance of the application. 

Memory has to be allocated to data and programs. Data in program 
memory are mainly the two rotating input buffers (maximum length for each: 
256 words, for a 20 ms. window of signal sampled at 12.8 kHz.) and the 
intermediate buffer of 512 words (its double length is due to the fact 
that for increasing generality the input data for FFT are intended to be 
complex). All of these buffers together take 1K words of program memory. 
Tables for windowing data and for calculating logarithms via table look up 
plus other constants and data (e.g. output buffers) require a maximum of 
0.5K words. 

The program requiring the most memory is the FFT which is coded "in 
line" [21] for maximum speeed: this program therefore requires 2.5 K words 
of memory. All other programs taken together (that is, pre-emphasis, win
dowing, band grouping, modulus and logarithm computation, and OCT eva
luation) occupy 1.9 K words, while the main and interrupting programs take 
a total of 0.4 k words. 

Hence the total memory required is 6.3 K words. This a posteriori 
justifies the augmentation of the initial 4K words of available program 
memory to 7K words of bank switched program memory. 

We also have to evaluate the computational load of the system in order 
to verify the fitness of the architecture for the real time implementation 
of the task. We can distinguish between the computational load due to 
background programs, independent of the sampling rate, and the com
putational load due to interrupting programs, proportional to the sampling 
rate. As we can see from Fig.2, the computational load due to background 
programs is 13 ms., and that due to interrupt programs is 3.2 ms. at the 
maximum sampling speed of 12.8 kHz. This comes from the fact that in this 
case every 78 /J.s. we use 14 /J.s. for the acquisition of the sample via 
interrupt (interrupt polling, loading of the data in the proper buffer 
location, controlling the advancement of buffer pointer). Hence, in total, 
we require 16.2 ms. every 20 ms. for the intended computation, which 
therefore can be done in real time. 

We point out also that if data acquisition were done more automati
cally in hardware (with external FIFO for example) we would not still 
achieve a significant improvement in performance and in any case we would 
also need 2 DSP's. 

5. Conclusions 

The implementation detailed here stresses the limits of the state of 
the art in digital signal processing. Since we found that for the rather 
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demanding but important task of cepstrum extraction, one DSP was not suf
ficient, we designed an efficient system based on two DSP, each of which 
controlling via bank switching an extended program memory, capable of per
forming the intended task, and of course less demanding tasks, as for 
example LPC coefficients extraction. 

However in cases where the computational load overflows the basic 
system capability, the system is also expandable both in ripple, both in 
parallel way. 
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Data or Kind of data or of program words V= variable} 
programs F = fixed area 

data - buffer 1 256 V 
" - buffer 2 256 V 
" - internal buffer 512 V 
" - Hamming window coefficients 256 F 
" - Table for calculating logarithms 128 F 
" - other data and constants '128 V, F 

data partial total for data '1.5k V, F 

programs - main and interrupts 0.4k F 
" - FFT computations 2.5k F 
" - other computations, 1.9k F 

that is, 
- pre-emphasis '" 40(*) 
- windowing '" 30(*) 
- modulus '" 132(*) 
- band grouping '" 312(*) 
- logarithm via table look up '" 260(*) 
- DCT "'1076(*) 

programs partial total for programs 4.8k 

total memory requirements 6.3k 

(*) data already taken into account in partial sum 

Fig. 1 - Program memory requirements (in words) 



www.manaraa.com

223 

Background 
or Kind of function Time 

interrupt 

background windowing 1 ms 
" FFT 7 ms 
" other background computations; that is 5.0 ms 

- pre-emphasis 1.4 ms (*) 
- modulus 2.3 liS (*) 
- band grouping 0.3 ms (*) 
- logarithm 0.6 ms (*) 
- OCT 0.4 ms (*) 

background partial for background 13 ms 

interrupt acquisition at sampling rate 12.8 kHz 3.2 ms 

total for background and interrupt 16.2 ms 

(*) data already taken into account in partial sum 

Fig. 2 - Time requirements (in ms) per frame 
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RECONFIGURABLE MODULAR ARCHITECTURE 
FOR A MAN-MACHINE VOCAL COMMUNICATION SYSTEM 

IN REAL TIME 
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Universite Paul Sabatier 

118, route de Narbonne 

31062 TOULOUSE - FRANCE 

The man-machine vocal communication requires autonomous, application

adaptable real time systems, whose cost is both reasonable and proportional 

to their efficiency. 

The realisation of a vocal terminal having such characteristics, makes 

it necessary to choose a parallel architecture. 

We present one architecture which is a combination of parallelism and 

pipelining. It makes it possible to get the best of the execution paralle

lism proper to the application class treating a continuous data flow. 

It is a modular architecture, staticly reconfigurable, functionally 

distributed, monitored by the data and with a multi-levelled hierarchic con

trol. 

1. I NTRODUCTI ON 

We are on the eve on a new era where everyday-extending applications 

of man-machine vocal communication systems will change working conditions 

in the most diverse fields. But to avoid limiting their use, we shall have 

autonomous real time systems, adaptable to application so that their cost 

should be reasonable and proportional to their efficiency. 

As far as we know there is no vocal terminal capable of such perfor

mances on the market today. However it would be interesting to have a flexi

ble and modular machine structure, allowing on the one hand to implement in 

real time methods already existing in the field of man-machine spoken com

munication, and on the other hand to progressively take into account the 

NATO ASI Series, Vol. F16 
New Systems and Architectures for Automatic Speech 
Recognition and Synthesis, Edited by R. De Mori and C. Y. Suen 
© Springer-Verlag Berlin Heidelberg 1985 
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recent results of fundamental research. 

But to have at one's disposal a vocal terminal functioning in real-time 

which would be at the same time evolutive and of a reasonable cost imposes 

constraints on the treatment methods as well as on the architecture that sup

ports them. 

Once discretised, the vocal signal can be considered as a continuous 

data flow and its treatment in real-time necessitates a dynamic treatment 

mode. The dynamic treatment is different from static methods in which the 

data dynamic is suppressed through their memorisation, which allows back

tracking to reactivate treatments. In a dynamic method, the results must ap

pear progressively as the data arrive which implies that only current data 

and data concerning a recent past can be treated, but that data concerning 

the future cannot be utilized at all. Speech recognition methods, analysing 

a vocal signal from left to right without backtraking, after the strategy 

of the "few best" in which only the most plausible solutions are kept and 

treated in parallel, are dynamic methods which can be implemented in real

time. 

Thus the realization of a vocal terminal imposes constraints in the 

writing of algorithms and also in the choice of the architecture that exe

cutes them. 

As soon as some vocal terminals, however elaborate they may be, are 

being studied, the treatments become so complex that it is no longer possi

ble to execute them in real-time on a classical computer. One must then turn 

towards parallel structure systems on which several treatments can be run 

simultaneously. 

This has been first attempted with the Cmmp multicomputers network [IJ 

and the CM * multiprocessors network [2 J of Carnegie Melon University on 

which the Harpy system [3J has been implemented. It seems that the perfor

mances of these systems are insufficient for speech recognition in real ti

me. The main reason for the relative failure appears to be the lack of ade

quation of the architectures used to the considered application. For, as 

Fennel and Lesser have underlined it, in their study on the measure of the 

parallelism that can be obtained by simulating the functioning in parallel 
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of their Hearsay II system [4J, the treatment speed may decrease when the 

number of processors increases, if the interconnections do not respect cons

traints related to the structure of treatments. Thus in order to satisfy 

these constraints, it seems preferable to define an architecture that takes 

into account the specificity of the data to be treated and of the derived 

treatments, rather than try to adapt the application to a predefined machine 

structure. 

Overspecialized architectures, though they offer the advantage of being 

simple to implement, should be avoided, because their rigid structure does 

not allow future further system evolutions. One must then turn towards the 

definition of an evolutive modular structure. 

This has been the a~m of the "Architecture des Systemes Paralleles" 

team, a section of the "Traitement Automatique de la Parole" group from the 

C.E.R.F.I.A. laboratory in Toulouse, whose studies have been first the defi

nition and then the realization of a Reconfigurable Modular Architecture 

whose features meet the defined requirements. 

2. RECONFIGURABLE MODULAR ARCHITECTURE 

The discretized vocal signal can be considered as a continuous data 

flow which must be treated in transactional mode. The functional decomposi

tion of this type of application brings to light treatments without any re

lation with each other, and treatments depending on the preceding ones only 

through the results obtained by them. Thus we have an application in which 

a continuous data flow may be treated by going through a series of stages 

each one being in charge of one part of the treatment. The successive pie

ces of information take each other's place according to the producer-consu

mer mode. 

To define the architecture we took into account the specificity of the 

application. This architecture ~s indeed adaptable to the functional decom

position of the application to be implemented. The machine is built as a 

"Kit" starting from basic elements which are associated as required by the 

application. 

We shall not give here any further detail about the architecture [5J 

and the physical realization [6J - [7J, we shall only describe the general 

structure of a treatment processor as well as the way it works and the prin-
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ciple of an application implementation on this architecture. 

2.1. STRUCTURE OF A TREATMENT PROCESSOR 

The structure of a treatment processor is defined inductively from ba-

sic elements which are : 

- a treatment processor (TP) 

- an exchange processor (EP) 

- a control processor (CP). 
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Control processor 

Exchange processor of 
stage K 
Treatment processor of 
stage K 
Buffer memory of stage K 

Fig. I - Functional structure 



www.manaraa.com

229 

These elements are interconnected according to the topology defined in 

fig. 1. Treatment processors of the same level are linked to an exchange pro

cessor and constitute one treatment stage. Each processor ignores the other's 

presence and communicates only with the exchange processor. The communication 

is realized by a ring network for events and by two memories : the input me

mory (1M) in which the data to be treated are stored and the output memory 

(OM) in which the results to be transmitted are stored. 

The distribution system in a stage is organized around two common buses, 

one for the input and one for the output, which allows a total parallelism 

for these two types of transfers. 

A buffer memory (EM), with a double access port in mutual exclusion, 

makes it possible to store the data between two consecutive stages. The ex

change processors are linked to the control processor by a ring network. 

2.2. WORKING OF A TREATMENT PROCESSOR 

When a treatment processor has finished carrying out the order for which 

it is specialized, it sends a data transfer request to the associated ex

change processor and then waits. The latter transmits the request to the con

trol processor which checks if the conditions for transfer are fulfilled. 

For a stage K, these conditions are : 

input transfer possible if data have been stored in B~_l by EPK- 1 

- output transfer possible if the data stored in B~ have been taken 

by EPK+ 1 • 

The control processor sends back an acknowledgement message to the ex

change processor indicating the possible transfers. When receiving the mes

sage the exchange processor carries out the data transfers according to a 

description which specifies the links between two consecutive treatment. 

Afterwards, the exchange processor communicates with the treatment processor 

so that the task can be carried out again. Once all the data transfers in 

the stage have been carried out, the exchange processor informs the control 

processor so that the state progress, between the stages, can be updated. 



www.manaraa.com

230 

When BMI is empty or when BMO has received some data, the control pro

cessor sends a message to the environment indicating either that some results 

are available or that some other data are required to carry out another 

treatment. 

2.3. IMPLEMENTATION OF AN APPLICATION 

The communication-execution-synchronisation separation simplifies the 

task of the user wanting to implement an application on this architecture. 

Indeed, he has to do only with the execution part and the descriptive pro

cessing relation between the different treatments. The synchronization and 

the communication are monitored by the system. 

For a given application, the machine configuration principle is as fol-

lows 

Each functional task of the application is associated to a treatment 

processor. These processors are connected with exchange processor to make an 

upper level treatment processor. 

The grouping of these processors must be made according to the topology 

defined by fig. I and adapted to the task to be executed. This approach is 

inductive. At the lowest level, to a so called elementary task (there is no 

subtler decomposition of the task) is associated an elementary treatment pro

cessor. At the highest level, a treatment processor is connected to I/O peri

pheral devices adapted to the application. For example, in the case of a vo

cal terminal monitoring an industrial process, a microphone and a loud-speaker, 

will be found for the vocal input and output, a specialized board for the sys

tem command and control, interface cards for the process control. 

An elementary treatment processor is built with a MC 6809 microprocessor 

and its accessory circuits. Furthermore it has an input memory (I.M) and an 

output memory (O.M) a 128 K bytes (16 x 8k pages) memory where it is possible 

to plug either PROMs or RAMs (indifferently). A parallel I/O line makes it 

possible to connect specialized cards (FFT, LPC, filters, ... ) or cards to in

terface with peripheral devices or data processing systems. The treatment pro

cessor then behaves as a host computer. 
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When the machine is configured, a program is implanted on the PROMs, 

this program being associated to a treatment as well as the descriptive pre

cising the connections between the different treatments. The control system 

then adapts itself automatically according to the number of implanted treat

ment processors and to the chosen configuration. 

3, ADVANTAGES OF THIS ARCHITECTURE 

The creation of a reconfigurable modular architecture which is adapted 

to the functional decomposition of the treatments allows the treatments to 

be carried out faster by increasing the degree of parallelism. 

In effect, in this structure, a data flow undergoes a treatment by going 

through a series of stages, each of which being responsible for carrying out 

one part of the treatment, the information moving successively through the 

stages. 

It should be noted that this type of parallelism can be particularly 

well adapted to the treatment of a continuous data flow. 

The solution used here for processor interconnection reduces the com

plexity of the system from the point of view of topology, communication pro

tocols, control and task sequencing. 

The principles used here simply regulate the problems linked to paralle-

lism 

- control of the flow of information, 

- conflicts for access to the same unit, 

- precedence and synchronization conflits. 

The repetitive structure at all levels has the double advantage of modu

larity and flexibility. It is possible to increase the power of the system or 

to introduce new treatment algorithms without modifying the communication sys

tem. Furthermore, the repetitive structure has evident economic advantages 

since it minimizes the cost of the development and commercialization of a sys

tem designed with a small numbers of different cards. 
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4. CONCLUSION 

The reconfigurable modular architecture which has just been described 

is that of a functionally distributed system, directed by the data and with 

hierarchy control over several levels. 

The ease with which such a system can be realised allows us to think 

that there will be widespread developments of adapted systems making full 

use of the parallelism of one class of applications. 

This is the reason why the CERFIA Laboratory thought of realising a pa

rallel machine, based on this architecture, adapted to real time speech 

treatment. A prototype is now operational and the realization of a real time 

recognition system of isolated multi-speakers is in its final phase. The 

realisation of a real time analysis and recognition system for continuous 

speech (ARIAL project) is being studied. But this architecture can be used 

too for other applications, whether for image treatment, robot command or 

also in parallel compilation and more generally in any application treating 

a continuous data flow in real time. 
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ABSTRACT 

The paper surveys dynamic programming based connected speech recognition 

algorithms and architectures. A discussion of the computational complexities of 

the algorithms is given and suggests that the single pass algorithm of Bridle et al 

is the most suitable for real time operation. Currently available architectures for 

dynamic programming are discussed and it is shown that these are not suitable 

for the single pass algorithm in their present form. An alternative linear systolic 

architecture is described which is capable of matching vocabularies of up to 25000 

words, in real time, using the single pass algorithm. The linear array has simpler 

data flows and uses fewer processing elements than most existing systolic 

structures. 
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INTRODUCTION 

Dynamic time warping (DTW) has become a popular technique for pattern 

matching in some speech recognition systems. It has found application in both 

isolated and connected word recognition and good recognition accuracies have been 

reported. However, the DTW algorithm has a very high computational 

requirement and this can be a limiting factor when designing high vocabularres 

systems for real time operation. In such systems it becomes necessary to 

optimize computational throughput by exploring special purpose hardware 

structures and matching them to current algorithms. In this way, the most 

optimal combination can be identified. 

DTW algorithms have a high degree of parallelism which can be exploited by 

using regular (or systolic) hardware structures. Over recent years, a variety of 

different options for systolic architectures have been proposed, such as Burr et al 

[IJ, Ciminiera et al [2J and Banatre et al [3J. These architectures have 

application in both isolated and connected speech recognition but vary with 

respect to the degree that parallelism and pipelining have been exploited. This 

leads to solutions with differing hardware requirements and complexities. It is 

apparent, when a global view is taken, that some architectures are only useful 

with certain algorithms and that some combinations may not be optimal in terms 

of number of processing elements, throughput and control complexity. It is 

important that the algorithm and architecture are considered together, the choice 

of algorithm can significantly affect the architecture (and vice versal). 

To give an architecture which is computationally efficient, simple to control 

and using the minimum of hardware requires that the right algorithm is chosen. 

This is reasonably straightforward with isolated word recognition but not so with 

connected word recognition because of its significantly higher complexity. A 

number of connected word matching strategies have been proposed, such as 

Banatre et al [3], Myers & Rabiner [4], Sakoe [5] and Bridle et al [6] which have 

differing architectural implications. A good algorithm is one which leads to a 

simple architecture that is as independent as possible of vocabulary and 
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application. Computational flow should be simple and not too dependent on 

boundary functions (global path constraints) since this leads to simpler control. 

The following sections summarize the considerations pertaining to the choice 

of algorithms and architecture comparing some of the available techniques. The 

first section discusses some of the alternative matching strategies with emphasis 

on their hardware implications. The second section discusses the available 

architectures with emphasis on their applicability to the algorithms and their 

practicality. The third section briefly describes an alternative, systolic architecture 

which implements Bridle's et al algorithm and shows that a very high throughput 

is possible. The final section concludes the paper with a summary of the most 

important points arising from this discussion. 

ALGORITHMIC CONSIDERATIONS 

The correct choice of algorithm is important since this can affect the 

complexity of the final implementation. This choice is not so straightforward in 

connected speech recognition because of the variety of matching strategies which 

can be employed. Matching strategy has a direct effect on computational 

complexity and the amenability of an algorithm for a hardware implementation. 

This section considers four algorithms covering a broad range of matching 

strategies and briefly assesses their suitability for an efficient hardware 

implementation. 

Sakoe's [4] matching strategy, depicted in Figure I, involves a two level 

process, the first level being word level matching, the second level being phrase 

level matching. Word level matching attempts to isolate the best word decision 

over each possible segment of the input speech. Segment boundaries are 

determined using an adjustment window. Phrase level matching uses the word 

level scores to determine the best concatenated sequence of word decisions over all 

possible concatenations and lengths. 



www.manaraa.com

236 

I 
---- - ---+-

PHRASE LEVEL MATCHING 

WORD LEVEL MATCHING 

Figure 1: Sakoe's Matching Strategy 

Myers' & Rabiner's IS] strategy, depicted in Figure 2, using a level building 

process. The number of levels is dependent on the maximum phrase length. 

Each level corresponds with an isolated word matching which is computed 'in 

strips'. The best scoring template ending at each strip is found and the scores 

used as initial conditions into the next level. Thus matching proceeds from level 

to level building up a series of word decisions at each level. Phrase level 

matching is implicit in the algorithm and the best phrase can be traced back 

from the end. A boundary function is used to restrict word level matching to a 

reasonable area of the warp grid. 

Bridle's et al [6] algorithm, depicted in Figure 3, computes the best 

concatenated sequence of templates in a single pass through the input sequence. 

The strategy assumes templates can start and end at any input frame. 

Transitions between templates are from the end of the best scoring template 

ending at one frame to the start of all templates in the next frame (for a simple 

syntax). Phrase level matching is implicit in the process and the best sequence 



www.manaraa.com

237 
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Ie vel 3 
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LEVEl BUILDING PROCESS 

PHRASE RETRIEVAL 

Figure 2: Myers' Matching Strategy 

can be found by tracing back from the end. 

Banatre's et al [3] algorithm, depicted in Figure 4, is similar to Sakoe's 

except that word level matching is not restricted by an adjustment window 

(although it can be). The vocabulary is matched to the input sequence and the 

best scoring template between a start point and a range of endpoints is found for 

all possible start and end points. The range of endpoints is determined by the 

dimensions of an isolated word warp grid. This grid slides through the input 

sequence in a similar fashion to the adjustment window of Sakoe's algorithm. 

Phrase level matching is done separately and concatenates the word decisions to 

form the best word sequence. Phrase length need not be specified. 
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Figure 4: Banatre's Matching Strategy 
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The matehing rate of a connected speech recognition system is dependent on 

how fast isolated word matching can be done. This depends on the matching 

strategy. Sakoe's algorithm (in 'real time mode') computes word decisions 

backwards from an end frame to a range of start frames given by the adjustment 

window. The width of the adjustment window depends on the template length. 

In hardware it is necessary to fix this width so that the largest template can be 

accommodated. A number of previous input frames must be saved and the same 

interframe distances re-calculated a number of times. This leads to computational 

inefficiency. A further restriction is that a maximum phrase length must be 

specified. 

Myers' algorithm computes word level matches over varying lengths of the 

input sequence depending on the level. This is because isolated word matching is 

done in strips and the number of strips varies because of the boundary function. 

This leads to vocabulary dependent variability which is unsuitable in hardware for 

control complexity reasons. A further problem, especially for real time operation, 

is that a section of the input sequence must be entered before matching can 

start. Some interframe distance calculations are repeated since levels 'overlap', 

this leads to computational inefficiency. The removal of the boundary function 

may remove some of these problems. Finally, the specification of a phrase length 

introduces a further restriction. 

Bridle's algorithm is perhaps the most efficient since interframe distances are 

only computed and used once. Input frames need not be saved since a single 

sweep is used and it is not necessary to return to an earlier section of input. 

Computational flow is sequential which can further simplify hardware. 

Banatre's algorithm is as computationally expensive as Sakoe's algorithm since 

the same interframe distance must be calculated and used a number of times. 

The warp grid dimensions are determined by the length of the longest reference, 

this determines the number of PEs required. Input frames must also be saved. 



www.manaraa.com

240 

ARCBlTECTURAL CONSIDERATIONS 

The choice of architecture has the most effect on the size of the fmal 

implementation, i.e. number of processing elements (PEs). However, the algorithm 

can also influence this by restricting the applicability of each structure. The final 

choice of algorithm and architecture should lead to a solution with a low number 

of PEs and simple control complexity but still offer high computational 

throughput. This section considers the mapping of the algorithm into an 

architecture using the architectures described by Burr et al [1], Ciminiera et al [2] 

and Banatre et al [3] as examples. 

Banatre [3] described an architecture to implement the systolic algorithm, 

which is based on similar ideas to Burr et al [1]. This is shown in Figure 5 and 

M' M~1 
_" I.test~' 
~~ 
J.---l---=---

I 
I 

- -:- - -:- - - - - - - - - -} -

: : : iso(aled word : : 

m-~~:~~~:** 
~ ~ 

minimising array ¢ 9 ¢ ........ ¢ ¢ 
! 

word decision~_-_-.::_-.:_-:M 
phrase level array 

Figure 5: Banatre's Architecture 

consists of the three arrays. The first is a two dimensional DTW array whose 
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dimensions are determined by the height and width of the warp grid, these 

depend on the length of the longest template, Rmax. This DTW array calculates 

the isolated word matches. The second array takes the isolated word scores and 

finds the minimum over all templates. The third array computes the phrase level 

match. The disadvantage with this architecture is that it requires a huge number 

of PEs, approximately Rmax.M', where M' is the width of the grid, and also 

requires three types of processing element to be designed. If there are V 

vocabulary words then the time taken to complete the match is 0 (VM) 

'operations', where M is the length of the input sequence and one operation is a 

distance calculation and a DP match. A reduced array (say a single strip) would 

require Rmax PEs but the time taken to complete the match would be O(VM2) 

operations. The number of PEs can also be reduced by removing those which lie 

outside of an adjustment window but this does not affect time complexity. 

However, the architecture integrates phrase level and word level matching quite 

well with a very regular data flow but is only suitable for Banatre's algorithm, 

and possibly Sakoe's. 

Sakoe's [4J algorithm would probably be best computed using a single 

diagonal of processing elements as proposed by Ciminiera et al [2J since this is 

more appropriate to calculation of isolated word matches using an adjustment 

window. A further array must be added which minimizes the DP scores between 

start and endpoints and computes the phrase level match. The width of the 

window, and hence the diagonal, is (2r+l) where r is a fraction, x, of the length 

of the longest reference. The phrase level array would probably consist of the 

same number of PEs. A possible configuration is given in Figure 6. The time 

taken for the architecture to match V vocabulary words to an input sequence of 

M frames is O((l+x)RmaxMV) operations, i.e. much slower than Banatre's 

architecture, but using fewer PEs. Data management and control could be a 

problem since the architecture must 'move through the data' hence the correct 

timing must be provided. 
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Myers' algorithm. is practically unimplementable (in hardware) in its standard 

form. However, with the boundary function removed the ideas of Burr et al [1] 

may be apprgpriate here. A number of possible array configurations have been 

described by Burr, the most amenable to this algorithm seems to be a 

horizontally moving reduced array, see Figure 7. This sweeps out each level 

taking input conditions from the lower level and passing final scores to the higher 

level. Some means of minimissing the 'strip' scores over all templates must be 

incorporated. The number of sweeps is equal to the number of levels. The 

array height is governed by the length of the longest template and the width is 

two processing elements, giving a total of 2Rmax PEs. The time taken for a 

complete match is O(IVM) operations where 1 is the number of levels. Control 

and data management could be expensive since the architecture requrires that 
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Figure 7: Possible Architecture for Myers' Algorithm 

frame interactions are correctly synchronized. A further disadvantage is that the 

whole input sequence must be saved. 

Bridle's algorithm is more sequential than the others because of its single 

pass nature. The pass is done one input frame at a time hence true real time 

operation is possible if all calculations can be done between successive input 

frames. None of the architectures proposed by Burr et al [I] or Ciminiera et al 

[21 appear suitable for this algorithm since they require the whole or part of the 

input sequence to be saved. The next section describes an alternative architecture 

and shows it to outperform those considered above. 
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SYSTOLIC ARCBITECTURE FOR THE SINGLE PASS ALGORITHM 

The single pass algorithm of Bridle's et al [6} requires an architecture which 

can compute path scores using only the present input frame. Square array 

architectures or single diagonals are not suitable since these require a number of 

input frames in the calculation. This section describes such an architecture and 

compares its performance. 

The architecture is a linear chain of PEs, shown in Figure 8, which has a 

r.i.V 

__ --------rert::======== 

u 

R 

rei. 2 laSt lrarne 
rei. 1 

systolic distance 
calculator 

} 
tocal Scoreos 
eve-rail minimum 

-~.o....r~ endpoint minima 

host 

Figure 8: Architecture for Bridle's Algorithm 

length determined by the longest template (Rmax). The input frame enters the 

left hand end of the array and meets with each frame of the reference templates 

as it is passed along the chain. Template frames enter in reference serial/frame 

parallel starting with the first frame of each template. At each PE, the 

interframe distance is calculated and added to the local minimum. The score is 
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then stacked for use at the next input frame. The length of the stack is the 

same as the number of vocabulary words and all memory is sequentially accessed. 

The score is also used to fmd an overall minimum score and a minimum 

endpoint score (if the present template frame is an endpoint). Each PE performs 

the same operations simultaneously and passes local scores overall minimum and 

endpoint scores to the next PE on the right for updating the next frame. When 

all templates frames have passed through, the last PE contains the overall 

minimum and the endpoint minimum. These are passed to the left hand end of 

the chain as initial conditions to start templates at the next input frame. 

Tracepoint labels are also passed to host to aid phrase retrieval. Matching rate 

is independent of the number of frames in each reference. The architecture is 

described in more detail in [7]. 

The highest performance results when fIXed hardware is used although this is 

very restrictive on the algorithm's 'internal' flexibility. The slowest computation 

is distance calculation which can be speeded up in the case of city block and 

squared Euclidean, using architectures similar to those described in [8]. The PE 

can thus be split up into a special purpose distance calculator plus a DP-matcher. 

The systolic array distance calculator can compute the distance in a time 

independent of the data dimensionality. However, time is dependent on data bit 

precision. The DP matcher must complete its calculations between successive 

distances. Any structure can be used assuming it is fast enough. A serial 

structure interfaces well with the distance calculator but requires a fIXed 

algorithm. A parallel, ALU based architecture interfaces well with the stack 

memory and offers some algorithmic flexibility. In either case, latency is not 

important since the architecture operates sequentially. The architecture computes 

the complete match in a time of O(VM) operations. Only V matches must be 

performed between successive input frames. If data widths are B bit then 

distances can be calculated in 2B cycles. 

Assuming a 20 ms frame rate and B=8 bits then a vocabulary of 

approximately 12500 words can be matched at a 10 MHz clock frequency. With 

a serial structure it may be possible to push this to 20 MHz hence giving a 
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maximum matching rate of 25000 words. Thus it can be seen that this 

architecture outperforms those described in the previous section on a throughput 

per processing element basis. 

CONCLUSION 

This paper has shown there is more to defining hardware for real time 

connected speech recognition systems than just specifying an architecture. It is 

not much use specifying an architecture with a high computational throughput 

which is then wasted on a computationally inefficient algorithm. This means that 

a large number of PEs must be used or low matching rates result. It is 

unfortunate, for instance, that Banatre et aI, having developed a good regular 

architecture for the connected speech problem chose an inefficient algorithm to 

work from. For a solution which has a low number of procesing elements, low 

control and data management complexity, and high performance both the 

algorithm and the architecture must be carefully chosen. 

A comparison of the algorithms shows that Bridle's, Sakoe's and Banatre's 

are suitable for true real time operation. Myers' algorithm requires the whole of 

the input sequence to be stored before matching commences. Bridle's algorithm, 

however, is much more efficient than Sakoe's and Banatre's since all the matching 

computations use only a single input frame, hence no computations are repeated. 

Sakoe's and Banatre's algorithm, requires that a number of previous input frames 

are stored since matching is 'guided' by an adjustment window or a warp grid. 

Banatre's, Sakoe's and Myers' algorithms also repeat inter-frame distance 

computations, the former two being the worse examples. Myers' algorithm also 

suffers because matching is guided by a boundary function which cannot be 

efficiently mapped into hardware. A final restriction imposed by Myers' and 

Sakoe's algorithms is that a maximum phrase length must be specified. Hence it 

can be concluded that Bridle's single pass algorithm is the most computationally 

efficient and the least dependent on vocabulary and application. The single pass 
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nature allows simple and easily controllable sequential operation with low storage 

requirements (only one DP score and word link per frame must be stored). 

A comparison of architectures shows that square arrays as proposed by Burr 

and also Banatre have the dual disadvantages of only implementing the less 

efficient algorithms and requiring inordinately large numbers of processing 

elements. Full size square arrays not only restrict template length (as do other 

hardware structures) but also restrict input sequence length. Reduced arrays and 

'diagonals' of processing elements as proposed by Burr and also Ciminiera require 

fewer PEs and are less restrictive on input sequence length. However, the 

application of these types of array is still restricted to the less efficient algorithms 

and also require increased data management complexity to ensure that frames 

interact correctly. All the above structures require the input pattern to be stored 

over a number of input frames or the whole sequence. 

Since none of the hardware structures proposed to date are suitable for 

implementing Bridle's algorithm an alternative structure based on a linear systolic 

array has been described. The architecture efficiently maps the sequential nature 

of the algorithm and is capable of very high throughput, i.e. 25000 words at 

input frame rates. 

Such high throughputs suggest applications in systems with high 

computational requirements, such as: 

(a) systems using multiple templates per word for (limited) speaker independence. 

(b) systems for multi-channel operation using a single, multiplexed recognizer 

(c) systems which require the tracking of sub-optimal paths for improved 

accuracy 

(d) combinations of the above. 

Incidentally, if very high throughput is not important, the length of the 

chain may be reduced with a proportional reduction in throughput. Other 

applications of this architecture are in isolated word recognition and string 

matching using the Levenshtein distance. 
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I INTRODUCTION 

Artificial Intelligence (AI) has recently advanced to the point that practical 

applications are now existing in several domains. Most of the results obtained 

are not due to general problem solving techniques but to the use of specific, 

domain-dependent knowledge. Formalizing and incorporating specific knowledge 

into a system makes it possible to reach the level of expertise comparable to that 

of a human expert in some specialized field. Such knowledge-based and expert 

systems have been extensively used in various domains like chemistry, medicine, 

geology, etc. The basic idea in these systems is to clearly distinguish between 

the knowledge base which usually incorporates rules and meta-rules about the 

domain of expertise and the control structures which manipulate this knowledge. 

That ensures great modularity and nexibility and makes it easy to modify and 

update a-system [11]. 

This approach is very attractive in all cases where knowledge is incomplete 

or ill-formalized and where it does not exist algorithmic solutions. Automatic 

Speech Recognition and Understanding (ASR) obviously represents a typical 

example in which, moreover, it is necessary to combine many diverse knowledge 

sources. 
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This chapter is devoted to the discussion of the impact of knowledge-based 

approaches in ASR. In section n the principles and interest of knowledge-based 

and expert systems are briefly exposed. The areas of ASR in which these 

approaches could be used are also presented. 

Section ill concerns the use of expert systems at the phonetic and 

phonological processing levels whereas section IV addressses the more general 

problem of designing and implementing an ASR system by using knowledge-based 

architectures. 

IT KNOWLEDGE-BASED SYSTMES 

n.I. Basic principles 

It is now widely admitted - although it has not been the case for years -

that the automatic recognition and interpretation of a spoken sentence can only 

be achieved through the optimal use of a large number of very diverse knowledge 

sources, from acoustics to pragmatics. A similar situation can be found in others 

domains of AI such as computer vision or natural language understanding. The 

cooperation and synchronization of as many knowledge sources as available make 

it possible to emit and/or cancel hypotheses until reaching the final solution, 

according to the general paradigm of hypothesis-and-test. 

It is not easy to give a definition of knowledge as useful in a 

knowledge-based system. A first characteristic is that knowledge is highly 

domain-dependent. Abstractly speaking knowledge is made up of descriptions, 

relationships and procedures corresponding to a given domain of activity. In 

practice knowledge can take many diverse forms. It roughly consists of the 

symbolic descriptions of "objects" and their relationships in a domain together 

with the procedures and heuristics for manipulating these descriptions. We will 

see later on that a very popular and efficient way of expressing and manipulating 

knowledge is under the form of simple production rules. 
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Three main problems are assoeisted with the design of Jmowledge-based 

systems in any domain: 

- knowledge acquisition - it is very difficult and time-consuming to extract 

knowledge from human experts. This remains an open problem in AI and the 

best that can be hoped is a computer-assisted system since a fully automatic 

acquisition of human knowledge by a system seems far ahead. Knowledge 

acquisition necessitates a long and careful interaction between the expert(s) and a 

knowledge engineer. Efficient schemes have been designed in specific domains, 

e.g. in speech spectrogram reading. The use of an expert system can be of 

valuable help since that makes it easier to test and update the knowledge, to 

detect contradictions, etc. In the case of speech recognition knowledge acquisition 

implies collecting and observing large data bases. This work is made easier by 

the use of dedicated computer facilities such as automatic segmentation or 

semi-automatic labelling of the speech wave, digital spectrograms display, etc., 

- knowledge representation - one is usually faced with the two complementary 

problems of what is to be represented and how. Classical AI representation 

techniques such as logic, semantic nets, production rules can be used, according to 

the peculiarities of the domain. An important aspect is the necessity of 

incorporating a certain amount of meta-knowledge, i.e. knowledge about 

knowledge. Meat-knowledge constitutes a fundamental aspects of human expertise 

and it is directly related to the reasoning strategies used by the expert, 

- control structures - this point is related to the manipulation of knowledge and 

of its optimal use in order to solve a given problem. Once again techniques 

developed in other areas of AI can be used successfully. 

n.2. An overview of expert systems 

Instead of the usual two-tiered organization (data structures and program) 

knowledge-based and expert systems introduce a more flexible, three-level 

structure: data, knowledge and control structures. These systems therefore 

introduce a clear separation between knowledge and the programs which 
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manipulate it. 

Figure 1 illustrates the overall organization of such a system. 

Knowtedge 

Ba.6e 

I~--I-__ EXPERT 

k'---+--_ USER 

Figure 1 Architecture of a Knowledge-Based System 

The data level stores a priori knowledge and facts about the domain and the 

particular problem to solve together with pieces of information which have been 

gained or deduced during the problem-solving process. 

The control structures, or inference engine, constitute the heart of the 

system. They use the knowledge available in the knowledge base and carry out 

inferences from this knowledge. 

The optimal use of an expert system necessitates friendly interfaces with the 

experts on one hand and the users on the other hand. Since these people are 

usually not specialists of computers these interfaces integrate a certain amount of 

natural language processing. 

The ability of such systems to solve a problem is mainly related to the 

quality of the knowledge base. This knowledge is usually represented in a 

declarative form by using one of the classical representation schemes. It is often 

given under the form of "pattern-invoked" operators. At each time the applicable 
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operators are applied and produce changes in the knowledge base. This process is 

repeated until the problem is solved. Such pattern-directed knowledge invocation 

has proven to be very efficient in a number of applications. The operators we 

have just introduced may be complex programs. However the most popular form 

for operators is the so-called production rule paradigm [6]. A production rule is 

of the form 

IF Condition THEN Action 

when ·Condition" generally consists of a conjunction of predicates and -Action" 

means a change in the knowledge base, i.e. the current state of the problem. 

Production rules make it possible to split a complex expertise into a large number 

of small knowledge parcels. This formalism presents several 

advantages: modularity, readability, ease of modifying or updating, possibility for 

the system to explain its reasoning. Moreover, a human expert often seems to 

use a production rule scheme while reasoning. The method presents however 

some drawbacks: production rules are not very powerful in terms of speed and 

efficiency, at least with present, general-purpose computers and it is sometimes 

difficult, if not impossible, to split knowledge in a particular domain into very 

small pieces. 

The control structures of knowledge-based systems use classical AI techniques 

that can be classified into three categories: 

state-space search including backtracking and the use of heuristics in order to 

speed up the search, 

problem reduction which consists of decomposing a problem into several 

subproblems that can be solved separatelYi this technique was used in the 

MYCIN expert system for medicine [23], 

constraints propagation, related to state-space search but without the 

necessity of backtracking since each partial solution must satisfy the various 

constraints which appear during the rule applications. EL, an expert system 
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in electricity, uses this kind of control structures [25]. 

Another issue in expert system design concerns the chaining of rules. There 

are basically two different solutions: 

a forward reasoning scheme which consists of starting from the data and of 

making successive deductions with the knowledge base (in case of production 

rules that corresponds to a left-to-right application of these rules), 

a backward reasoning scheme which consists of starting from the goal to be 

reached and of defining subgoals in relation with the technique of problem 

reduction. 

It is often interesting to combine these two basic schemes in order to 

improve the overall efficiency of the system. 

The development of a knowledge-based or expert system is a long and 

difficult task. Besides the problem already mentioned of the automatization of 

knowledge acquisition this development itself necessitates the use of specific, 

sophisticated tools. Several tools already exists and are widely used, such as 

EMYCIN, OPS 5, AGE, HEARSAY ill, etc. However a large amount of work is 

stilI needed in this area. 

n.3. Applications to Automatic Speech Recognition 

Automatic Speech Recognition, like other fields of AI such as computer 

vision, is characterized by a close interaction between a low-level processing, i.e. 

the acoustic-phonetic decoding, which represents the perceptive aspect of the 

problem, and a high-level (linguistic) interpretation which represents the cognitive 

aspect (figure 2). Knowledge engineering techniques can be helpful at both levels 

even though they must be considered carefully and constitute by no ways a 

miraculous solution for yet unsolved problems. In fact these techniques can be 

considered at two levels: 

they represent a flexible tool for solving specific problems especially when 
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human experts possess an explicit knowledge about the domain (e.g. 

acoustic-phonetic decoding, phonology, prosody, etc.), 

they provide a general framework for designing the architecture of a speech 

recognition system, e.g. blackboard-like systems, production systems, expert 

societies, etc. 

High-level 

Low-Level 

Processing 

Microphone Camera 

} CognUi.ve 
Mpew 

} 
PVLc.eptive 

Mpew 

Figure 2 Principles of a Computer Understanding System (Speech or Vision). 

We will now review with more details these different aspects. 

m PHONETIC AND PHONOLOGICAL ASPECTS OF SPEECH 

RECOGNITION 

m.l. Acoustic-Phonetic Decoding of Speech 

The acoustic-phonetic decoding of speech, i.e. the mapping of the acoustic 

speech wave into discrete phonetic units, constitutes a major bottleneck in the 

design of large scale speech recognition systems, especially in multi-speaker 

environment. Prototype-based approaches using classical pattern-matching methods 
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have proved to be unsufficient in order to obtain a high accuracy. On the other 

hand a rule-based recognition yields good results but cannot take into account 

large amounts of training data which are necessary for getting better 

performances. That can be done either by using a stochastic approach (for 

instance with a hidden Markov model) or by capturing the expertise accumulated 

over the years by phoneticians and speech scientists especially in reading speech 

spectrograms [27] or other kinds of parametric representations of speech such 8S 

LPC spectra, tables of numerical measurements [3] or temporal evolution of energy 

and formants [19]. 

There are several strong motivations for adopting a knowledge-based approach 

in phonetic decoding: 

first of all the existence of human expertise: a trained phonetician can 

transcribe a sentence by inspecting its spectrogram with a 85% accuracy 

which is far better than the present recognition rate of automatic systems 

and, moreover, this knowledge is to a large extent speaker-independent, 

this human expertise is conscious and can be formalized by a set of rules 

and meta-rules, 

the expertise will be useful not only for phonetic decoding but also for very 

important tasks such as segmentation or gross phonetic classes determination. 

In the SYSTEXP project we are presently developing in our group [5] we 

aim at developing an expert system for automatic reading of speech spectrograms 

in order to improve our present speech recognition systems and eventually develop 

new sytems. A major point concerns the acquisition of human expertise in close 

interaction with the expert. We have particularly emphasized this aspect of the 

problem and we have developed special procedures for this purpose [4]. 

It is interesting to see how the expert proceeds. His process is usually made 

up of two successive steps: 

a global overlook on the spectrogram in order to determine the energy 
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variations and a mean TOwel duration (directly related to the speech rate of 

the speaker). These parameters are then integrated in the strategy of the 

expert, 

a local analysis which is carried out either by direct pattern matching or 

(most commonly) by visual analysis and reasoning on one phonemic segment 

and its two neighbours (whenever the segmentation seems reliable, otherwise 

an island-driven strategy is adopted). 

According to the characteristics of the task the following guidelines have 

been used in the implementation of our expert system: 

most rules are contextual since the decision of the expert on a given segment 

relies on its neighbourhood, 

it is necessary to implement both 8 forward and 8 backward chaining of the 

rules, 

several kinds of rule are used concurrently [12J: 

• gross phonetic class identification rules, 

• exclusion rules, 

• phoneme identification rules, 

• meta-rules related to the knowledge of the expert about his own phonetic 

knowledge and enabling him to choose 8 strategy, 

at the strategy level any hypothesis never relies on just one, even very 

strong, cue. More generally it is necessary to postpone any decision until 

enough certainty exists. This "delayed decision" strategy is of general 

interest in speech recognition, not only at the acoustic-phonetic level. 

It should also be noted that rule-based reasoning does not exclude in some 

cases the use of pattern-matching techniques with stored prototypes. The human 

expert sometimes uses this method and, therefore, both methods have to be mixed 

in the implementation of a system. 
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SYSTEXP is presently implemented in LISP on a Motorola 68000 machine 

and extensive tests are now being performed. 

We have already mentioned several projects on related topics. [18] proposes 

a slighly different approach which consists of implementing an expert system using 

the expertise of a specialist of automatic speech recognition with a channel 

vocoder. [15] describes an interesting architecture for a speech spectrogram 

reading expert system. The model is based on the idea of experts cooperation 

and it is made up of three complementary modules: 

a visual reasoning expert which finds or verifies visual features on the 

spectrogram, 

an acoustic-phonetic expert which has to relate visual features to phonetic 

units, 

a phonetics expert which reasons about possible phoneme sequences and 

phoneme transformations. 

Another actual application of expert systems in phonetic transcription is in 

the recognition of large vocabularies (several thousand of words). It is obvious 

that such systems have to be speaker-independent and cannot be handled by 

global pattern recognition techniques such as dynamic time warping. It is 

therefore necessary to take an analytical approach which consists of transcribing a 

word into a phonetic lattice and of matching this lattice against the phonetic 

transcriptions of the words in the lexicon. For sake of efficiency it is interesting 

to limit this comparison to a small subset of the lexicon. Experiments carried 

out for English [14] and for French [12] have shown that the selection of a 

sub-vocabulary for an unknown word can be done by describing the words in 

terms of gross phonetic classes (vowel, voiced plosive, sonorant, etc.). The results 

for a 1000 word vocabulary show that the mean size of the subvocabulary is 

around 10 for about 6 phonetic classes [17J. A rule-based decision is well suited 

for such a gross phonetic classification and it is then very attractive to use an 

expert system approach. In fact many rules used by expert phoneticians are 



www.manaraa.com

259 

expressed in terms of phonetic classes, e.g. 

* 

* 

IF Formant 1 £: [250 - 325 Hz] 

AND Formant 2 € [1200 - 1500 Hz] 

THEN NOT Vowel 

IF Visible Energy = Voicing Bar 

AND Global Energy Decreases Rapidly 

THEN Voiced Plosive 

Moreover these broad classes usually related to the manner rather than the 

place of articulation. They tend therefore to be more robust and 

speaker-invariant. Figure 3 shows the architecture of our large vocabulary 

isolated word recognition system with the role played by the knowledge-based 

system both for gross phonetic classification and phonetic transcription of a word. 

Input Speech 

1 
Acoustic Feature 

1 
Extraction 

I 
Broad Phonetic Expert Phonetic 
Classification System Transcription 

I 
Access to 

the Lexicon 

I I ... 1 Phoneme Lattlce Sub-Vocabulary 

Architecture of a Large Vocabulary Isolated Word Recognition System 

Figure 3 
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ill.2. Use of frame grammars in control structures 

We have just seen that the acoustic-phonetic knowledge base can be splitted 

into a large number of production rules. An alternative approach, though not 

exclusive, consists of defining the, control structures of a knowledge-based system 

as a grammar of frames. In that case the selection of a rule or operator to be 

applied at any time is controlled by a planning system described by a frame 

grammar. 

Frames were initially introduced for natural language understanding. A 

frame can be defined as a basic knowledge structure composed of a frame name 

and of a variable number of slots. The slots are the holder of particular pieces 

of information. The frame language is used for representing knowledge and how 

to use it. 

There are several advantages to adapt this formalism to speech recognition. 

First that allows the activation of different acoustic analyses according to the 

context. Second these control structures are compatible with a rule-based 

description of knowledge. Third that makes it possible to introduce the 

important notion of planning in the speech recognition process. 

De Mori [7] has proposed a frame language for extracting acoustic cues from 

the speech signal. Good results have been obtained for English, French and 

Italian. We are presently developing in Nancy a more general system using a 

frame language for the phonetic decoding of speech in relation with our phonetic 

expert system. 

ill.a. Phonology and Lexicon 

A major activity in automatic speech recognition consists of emitting word 

hypotheses. The lexical level therefore plays a central role in a system. The 

great amount of variation in normal, continuous speech makes this process 

difficult since a word can be realized in a number of diverse ways according to 

the context, speaker characteristics, rate of speech, etc. 
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Fortunately, much of this variation appears systematically ,and can be 

formalized in contextual production rules called phonological rules [24]. In fact 

phonological knowledge links together the phonetic segments given by lower 

processsing levels and the morphological units used in the lexicon to describe the 

words. 

A knowledge--based approach can be adopted in order to capture and use 

phonological rules [21]. An important contribution can be expected at the levels 

of knowledge acquisition in interaction with linguists and of sophisticated control 

structures for activating phonological rules. 

There are roughly two extreme solutions for incorporating phonological 

knowledge in a speech rrecognition system: 

an analytical method which consists of applying the rules to the output of 

the acoustic-phonetic decoder at each access to the lexicon, 

a generative method which consists of expanding the lexicon by 

precompilation of the phonological rules. That yields a "phonological lexicon" 

including the various allophonic forms of words in context. 

The latter is much more efficient in terms of processing time but it also 

presents some important drawbacks. First it is expensive in memory space (the 

expansion factor of the lexicon can be as large as 8). Second it is difficult to 

assign a likelihood measure to each production in the lexicon and a problem 

appears for inter-words rules. Finally the nature of phonetic variability is lost 

during the expansion process (for instance unstressed syllables are usually more 

sensitive to variations than stressed syllables). 

It can be considered that a certain amount of rules should be used for 

generating the lexicon whereas other analytical rules should be applied during the 

recognition process. 
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IV KNOWLEDGE-BASED ARCHITECTURES FOR SPEECH 

UNDERSTANDING 

N.!. General Overview 

We have already seen that the automatic recognition and interpretation of a 

sentence can only be achieved through the cooperation of all available knowledge 

sources, from acoustics to pragmatics. An important issue in the design of a 

system is therefore to define architectures which allow such an interaction between 

very diverse knowledge sources KSi each having its own monitor Mi, as illustrated 

in figure 4. Each knowledge source contains its own knowledge representation 

scheme and its own procedures for making hypotheses. 

Knowledge Sources [KS) 

Scheduling and Monitoring 

Speech 
Input ----~ Interpretation f-----..,.Answer 

General Architecture of a Speech Understanding System 

Figure 4 

Various approaches have been proposed to solve this problem. Although it is 

an oversimplification we can distinguish between three classes of approaches: 

the first class consists of integrating all available knowledge sources into a 

simple structure. This is for instance the case of HARPY system which 

integrates a finite state network as will be seen later on, 

the second class uses some kind of stochastic modeling. We have already 
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mentioned the use of Markov models at the phonetic level. This approach 

can be generalized to all knowledge sources, as for instance in the system 

developed by IBM [1] or in the DRAGON system [2], 

the third class is based on the classical AI paradigm of hypothesis-and-test 

which consists of emitting hypotheses on the basis of available knowledge and 

of verifying these hypotheses. This process is made necessary by the various 

errors and ambiguities which may be produced by a nonperfect pronunciation 

or during the word boundaries detection, etc. This II AI approach" is the one 

we are most concerned with in this paper. It clearly involves three kinds of 

problems which are not yet completely solved: 

• knowledge representation, 

• hypothesis evaluation, 

• interpretation control and scheduling. 

In fact the cooperation of various knowledge sources emitting hypotheses at 

various levels and at different instants during the interpretation of a sentence can 

be viewed as a parallel, synchronous or asynchronous access to a three-dimensional 

data base which contains the various concurrent hypotheses. The three 

dimensions are time, levels of interpretation and hypotheses. 

IV.2. Distributed knowledge sources 

There are basically two extreme models in order to implement the 

architecture suggested in figure 4, i.e. a heterarchical model in which each KS is 

connected to and interact with all other KSs and a hierarchical model in which a 

supervisor controls the operation and interaction of all KSs. 

A straightforward implementation of a heterarchical model is not interesting 

for efficiency and cost reasons though attractive on a theoretical point of view. 

A good compromise is the blackboard model as used in HEARSAY II [16]. In 

this system the various knowledge sources are considered as independent processes 
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which, theoretically, are not aware of each other and which asynchronously post 

hypotheses at their own level (acoustic feature, phoneme, syllable, word, phrase, 

sentence) to a global data base called the blackboard. This complex data 

structure thus contains a description at different levels of the sentence to be 

recognized. The blackboard constitutes the only link between the knowledge 

sources and its role is twofold: 

it transmits a message (i.e. an hypotheses) between two knowledge sources. 

An hypothesis emitted by KSi can trigger KSj. The activation of a KS is 

therefore data directed: a certain number of preconditions have to be 

fulfilled in the blackboard in order to enable a given knowledge source to 

access the blackboard for creating, modifying or cancelling one or several 

hypotheses. The action of a KS on the blackboard makes it possible to 

activate new KS , and so on, 
s 

it contains the representation of the current interpretation of a sentence 

under the form of a set of hypotheses and of their relationships. 

The global structure of a knowledge source lin the blackboard model is thus 

of type "Condition-Action". It constitutes in that sense a generalization of the 

production rule models. However there exist considerable differences between 

HEARSAY II and production rule expert systems like for instance MYCIN, 

especially at the levels of reasoning schemes, control, etc. 

In HEARSAY II the activities of the KSs are scheduled by using a strategy 

called "focus of attention". This strategy makes it possible to assign priorities to 

the different competing KS task!! according to the value of a weighting function 

based on several principles concerning the validity of data, the reliability of a KS, 

etc. 

The general architecture of the HEARSAY n system is illustrated in figure 5. 
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FOCUS OF 

CONTROL 

OATA8ASE 

SCHEDULER 

Figure 5 Architecture of HEARSAY IT (after (Erman SO]) 

This architecture can be successfully used for implementing expert systems in 

complex domains with multiple, uncertain knowledge sources such as computer 

vision [22}. 

In a hierarchical model of speech understanding architecture the processing is 

controlled by some kind of supervisor. The supervisor activates the various 

available knowledge sources in contrast with the pattern-invocation of the 

blackboard model. This model is the most commonly encountered in practical 

systems. 

A good example illustrating this model is the HWIM system [26]. This 

system uses a bottom-up, top-down strategy with island-driven focus of attention 

which appears to be one of the most powerful strategies available. 
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Another interesting way of implementing the distributed problem solving 

aeheme necessary in automatic speech recognition is to define a society of experts. 

Each expert in the society is assigned a particular task which has been identified 

during a preliminary task decomposition [8]. That makes it possible to have a 

parallel execution of tasks suitable for real-time operation, with an efficient 

cooperation of the various experts different of the one which exists in the 

blackboard model. This model has been used for implementing a phonetic feature 

hypothesizer in the framework of a continuous speech recognition system [9]. It 

has now to be extended to the overall recognition process. 

IV.3. Finite state networks and production rules 

We have seen in par. IV.I. that a method for representing the various 

knowledge sources necessary in the speech recognition process was to integrate this 

knowledge into a single finite state network. To each state in this stochastic 

network is associated a phone template and a set of transitions to states 

representing phones that can follow it in time. The network therefore represents 

all allophonic variations of all possible sentences in the language. The 

interpretation of an input sentence consists of finding the path through the 

network with maximum likelihood according to the phone transcription of this 

sentence. In order to reduce the computational complexity of the recognition a 

beam search strategy has been adopted in order to keep active only a limited 

number of the possible states at each step of the search. Although non 

admissible this strategy is very efficient for speech recognition. 

The stochastic network of HARPY contains all the available knowledge. It 

can be described by a set of stochastic rules 

P(i,j) 
SCi) -+ h S(j) 

where P(i,j) is the transition probability of going from state S(i) to state S(j) and 

h a current hypothesis. Such stochastic rules represent pieces of knowledge which 
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can be transformed into production rules of the type [20]: 

IF S(j) is an active state 

AND h is a hypothesis 

THEN Compute the likelihood of reaching S(j) from SCi). 

HARPY can therefore the rewritten into a production system. Production 

rules can thus be applied not only for solving specific problems (phonetic 

decoding, phonological variations, etc.) but also for implementing speech 

recognition architectures. However the complexity of the task does not guarantee 

the efficiency of a pure production system for recognizing and interpreting a 

sentence. 

V CONCLUSION 

Knowledge-based and expert systems have been successfully used during the 

past few years in a number of domains. An important aspect of such systems is 

to provide a functional distinction between the knowledge base concerning the 

domain of expertise considered and the control structures which manipulate this 

knowledge. 

Knowledge engineering techniques can be also very helpful in ASR. On one 

hand they help solving specific problems where there exists an important but 

ill-formalized human expertise. A typical example is the acoustic-phonetic 

decoding of speech, a major bottleneck in the design of ASR systems. Capturing 

the expertise of phoneticians reading speech spectrograms makes it possible to 

substantially improve the phonetic decoding of speech as well as speech 

segmentation or gross phonetic class identification. Similar techniques can be used 

for formalizing and using phonological knowledge in ASR. 

On the other hand knowledge-based systems provide a good framework for 

implementing ASR system architectures. The blackboard model used in 

HEARSAY IT is an efficient way for having multiple knowledge sources 
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cooperation. Other schemes, like production systems or expert societies present 

also interesting features. 

In conclusion knowledge engineering techniques do not solve all open 

problems in ASR but they definitely help getting substantial improvements in the 

domain. 
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ABSTRACT 

This paper gives an overview of a research effort whose goal is to develop a 

system which can carry out a dialog concerning a particular task domain using 

continuous German speech for input and output. The main processing phases are 

initial segmentation and labeling, finding words, understanding the meaning and 

giving an answer. Specialized processing modules for handling these four phases 

were developed or are being developed. The processing modules communicate via 

a common database. 

1. INTRODUCTION 

Speech is considered to be the most distinguishing human capability [1] -

highly developed vision capability can be observed in many animals, but speech is 

mastered by human only; speech is also considered to be the most natural and 

efficient means of human communication [2]; and speech offers a communication 

channel which is fairly independent of hand and eye [3]. Therefore, it is no 

wonder that automatic speech recognition is an area of intensive research sinee 
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several years, partly because of mere scientific interest, partly because of 

promising applications. 

Basic tasks are recognition of isolated words or of a spoken text fairly 

independent of the speaker, and recognition of a speaker fairly independent of the 

spoken text. Recognition of a spoken text usually requires continuous speech 

recognition and the representation of the meaning of the speech. This field was 

initiated and treated with great engagement in the ARPA Speech Understanding 

Research Project. The role of high level syntactic, semantic, and pragmatic 

knowledge was stressed in this work, new system structures emerged in the 

HEARSAY II and HARPY architectures and several operational laboratory systems 

were completed. This work is reviewed in [4J. In addition, continuous speech 

recognition was investigated in many laboratories all over the world, and a review 

is given in [5]. Although this work brought significant contributions and 

improvements, additional work is needed in several respects, for example, more 

reliable phonetic segmentation, speaker independence, larger vocabularies, dialog 

strategies, syntactic, semantic and pragmatic reasoning and real time performance. 

A broad account of recent achievements is presented in [6]. It should be 

mentioned that also the isolated word recognition problem is treated furtheron, in 

particular the problems of speaker independence and large vocabularies [7J. 

At our institute research on understanding continuous German speech started 

around 1979. Our present research goals are as follows: 

1. Develop a complete dialog system covering the tasks of recognition (of 

words), understanding (of the meaning), generation of further inquiries to the 

user, and generation of an answer, see Fig. 1. 

2. Use a flexible system structure suited to carry out basic research. 

3. Achieve speaker independence. 

4. Limit the bandwidth to telephone quality. 

6. Use a vocabulary of about 2000 words. 

6. Apply high level syntactic, semantic and pragmatic knowledge. 

7. Allow a large subset of German language. 



www.manaraa.com

273 

8. Exclude dialects. 

O' 1 S t St cture la og ,£S em ru 
while no external stop: wait for input utterance 

recogni ze words 

understand the meaning with respect to dialog context 

Yes utterance complete? No 
determi ne answer [determine question to user 
output of answer or question by synthetic speech 

Fig. 1 The basic structure of a dialog system using continuous speech for input 

and output. 

The system is called EV AR according to the German words for the four 

tasks mentioned in point 1 above. It should be noted that the 2000 words in 

point 5 are to be understood as cardinal forms. Since flexions of a word often 

sound very different from the cardinal form, all flexions of a word are also 

included in the lexicon and the total number of entries will be about 5 - 6000. 

The system structure adopted for EVAR is according to a stratified linguistic 

model similar to the one given in [8J, and the coordination of system modules is 

via a centralized data base and a control strategy as suggested first in HEARSAY 

II [4J. Fig. 2a,b show the present structure of the system, and this was also the 

structure used in former work about two years ago [9,10J, but with some 

modifications. The two modules Word Hypothesization and Word Verification in 

Fig. 2a formerly were combined in only one module Lexicon. Furthermore, the 

module application meanwhile was split into the three modules Dialog, Retrieval, 

and Answer. The system as documented in [9,10] consisted of a relational data 
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Fig. 2a The present structure of the speech understanding and dialog system 

EVAR 

base, an Acoustics - Phonetics Module [11], a Lexicon Module, and a simple 

Control Module; a first version of a Syntax Module was available, but not yet 

integrated into the system. Inquiries about schedules of German intercity trains 

were chosen as an example of a task domain. 

Incorporated in the system EV AR is the following knowledge: 

1. A sample of hand-segmented and hand-labeled continuous German speech. 

2. A lexicon with spelling, pronunciation, syntax and semantics. 

3. Rules for generating inflexions. 

4. Rules for generating pronunciation variants. 

5. An ATN-grammar of German language. 

6. Semantic classification and compatibilities of some word classes. 

7. A semantic net representation of the task domain. 
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explicit knowledge processes representati on 

synthetic speech speech output 

sentence structure 
linguistic knowledge 

genera to. ~.----______ --, 

linguistic component text (phonetic) 

adapter algorithm ~ intermediate 

.--_______ ---.~ a",wer repres. 

search for path I-. I facts of answer 

'---d-i-a-l O-g-co-n-t-ro-l---J,,"~ di a log memory 

pragmatic matcher ~ragmatiC case fram. 

semantic matcher ~ semantic case frames 

parser syntacti c 

.--_______ ---,l\ to"' tit"ents 

word verification ~ words 

train schedule 

dialog strategy I 

pragmatic network I J 
I 

semanti c 
compatibilities I ~ 

ATN grammar 
I ~ 

phonological rules ~ 

'" lexicon 
word hypothesization ~.----______ ---, 
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Fig. 2b The stratified linguistic model used in the system EV AR 
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8. An Inter City train schedule. 

9. An ATN representation of the dialog strategy. 

10. Linguistic knowledge for text generation. 

This paper gives an account of the present status of EV AR. In Section 2 

the initial segmentation and labeling of speech is treated which is performed by 

the Acoustics-Phonetics Module. The problem of finding words is handled by the 

Word Hypotheses and Word Verification Modules and discussed in Section 3. 

Section 4 gives an account of understanding the meaning of an utterance which is 

done in the Syntax, Semantic and Pragmatic Modules. First approaches to 

answer generation are treated in Section 5; this is done by the Dialog, Retrieval 

and Answer Modules. The concluding remarks in Section 6 give some directions 

of further work which we should like to explore. Because the intent of this 

paper is to give a survey of our recent and current work, mathematical details, 

which may be found in other and forthcoming papers, had to be omitted. 

2. INITIAL SEGMENTATION AND LABELING OF SPEECH 

In our system speech is bandlimited to 0.1 - 3.4 kHz, sampled at 10 kHz, 

and quantized with 12 bit per sample value. Segmentation of the speech into 

phones is done by the "classification, then segmentation" approach. This means 

that the whole utterance is subdivided into a number of frames, in our system 

frames are repeated every 12 ms and contain 20 ms of speech passed through a 

Hamming window. In a first classification step each frame is classified into the 

four categories silence, voiceless, voiced fricative and voiced nonfricative. In a 

second classification step the categories of a frame are classified into phone 

components. Examples of phone components are M, I, L, 0 in category voiced 

nonfricative, Z in category voiced fricative, and S, F, burst of t, aspiration of t 

in category voiceless. In most cases a phone component coincides with a phone, 

for example, the phone component I coincides with the phone Ii but in some 

cases they do not, for example, the plosive [t] has the phone components silence, 
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burst of t, and aspiration of t. 

In both classification steps several alternative classifications are allowed. 

Since a Bayes classifier is used for classification, posterior probabilities are used to 

measure the reliability of alternatives. Each category of a frame which has a 

posterior probability greater than 2% is considered in further processing. 

Reliability of a phone component assigned to a frame is measured by the product 

of the posterior probabilities of the category and the phone component of this 

frame. The five most reliable phone components are used for further processing. 

Finally, several frames are combined to one segment which corresponds to a 

phone. This is done by several rules which merge adjacent similar frames to a 

segment part, determine essential segment parts, and extend essential segment 

parts as far as possible. Again, up to five alternative phone classes may be 

assigned to one segment. The final output is a string of segments, each labeled 

with up to five alternative phones and each phone rated by an assigned 

reliability. In addition, each segment also is assigned a measure of loudness and, 

if applicable, the pitch frequency. These two parameters are provided as prosodic 

features, but they are not used in the system presently. The structure of the 

Acoustics-Phonetics Module is given in Fig. 3, a labeled speech wave is shown in 

Fig. 4. 

Acoustics-Phonetics Module 
i~ut: speech wave from microphone in unprepared room 
0.1 - 3.4 kHz band pass filtering, 10 kHz sampling 
mean energy normalization in time intervals 
10 mel cepstrum features plus loudness 
1. classification stage: 4 categories 
2. classification stage: 40 phone components 
obtain phone segments by hierarchical syntactic composition of phone components 
out~ut: string of segments, each with up to 5 phone labels and reliability, 

each with measure of loudness and pitch 

Fig. 3 An overview of initial segmentation and labeling 
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Fig. 4 An interval of continuous speech, showing the German word 

"SchliePfacher (lockers)", its initial segmentation and labeling, and some 

of the word hypotheses generated. 

An early version of the Acoustics-Phonetics Module is described in [11]. 

Meanwhile several additions, improvements and further investigations were carried 

out. 

1. The sample of hand segmented and labeled speech was enlarged from 100 s 

spoken by 6 speakers to 600 s spoken by 12 speakers (6 male, 6 female). 

2. Energy normalization was improved. 

3. Several speaker normalization techniques reported in the literature were 

tested. 

4. The number of phone classes was enlarged from about 30 to 40. 

5. Experiments with several feature sets were made. 
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6. The suitability of nearest neighbour classification was tested. 

7. Segments were built from frames by a hierarchical syntactic approach. 

A detailed treatment of these points will be given in a forthcoming 

dissertation [12]. Only a short account of the major points can be given here. 

Hand segmentation and labeling was done by one person who knew the 

spoken sentence, could listen to it and observe the speech spectrogram on a 

display. The sample of 600 s of speech spoken by 12 speakers is used to design 

the above mentioned classification stages for categories and phone components. 

Speaker independence is simulated by designing the system using data from 11 

speakers and testing it with data from the one remaining speaker. This process 

is repeated 12 times in order to test all 12 speakers. Of course, 12 speakers 

probably are insufficient to judge system performance if many speakers are 

involved. But the present sample gives first estimates of system performance and 

may be the basis for obtaining larger samples by more automated approaches. 

In the first experiments energy was normalized with respect to the whole 

utterance. This turned out to be less useful because usually energy tends to 

decrease at the end of an utterance. Therefore, energy now is normalized in time 

intervals whose length is small compared to the length of an utterance and large 

compared to the length of a phone segment. A time interval of 400 ms was 

found useful in several experiments. 

Normalization of frequencies of the first two formants and of vocal tract 

length was employed in order to improve speaker independence. However, in our 

experiments the effect of these normalization procedures was negligible. 

The initial set of phones consisted of 30 phones. This set was enlarged to 

40 phones. A fairly complete list of phones used in German language contains 

about 60 phones. Nevertheless, a condensed set of only 18 phones is presently 

used in word hypothesization and is completely sufficient as mentioned in the 

next section. This condensed set is covered by the presently available 40 phones. 
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Initially, LPC based features were used for classifieation [l1J. In addition 

mel-frequeney and mel-cepstrum coefficients (mcc) were tested. The best results 

were obtained using mcc, and this result is in accordance with [13J. However, a 

slight modification was necessary in order to make mce optimal also for 

classification of categories - loudness has to be used as an additional feature in 

this case. In our experiments the first 10 mcc turned out to be suffieient. 

In [14] one finds the sentences "we should stop doing researeh on statistical 

decision theory ... " and the NN-rule is "simple to understand and to program, 

essentially distribution-free, and powerful in terms of performance". Since we 

have, . in fact, evidence that there are deviations of feature distribution from the 

Gaussian distribution and since a more powerful classification procedure is always 

welcome, the NN-rule was tried as an alternative to simple Bayes classification 

using the normal distribution hypothesis. NN-rule prototypes were selected by 

editing a sample of speech spoken by 4 speakers, then condensing it and then 

reducing it. Tests were made with the sample from the remaining speakers, and 

this was compared to a Bayesian classifier designed and tested with the same 

samples [15]. Design time for NN-Prototypes far exceeds design time of the 

Bayes classifier, and recognition rate of the NN-rule was 45% with editing only 

and 41% with editing, condensing, and redueing compared to 51% of the Bayes 

classifier. A preliminary test gave no significant difference between NN-rule and 

edited NN-rule. Of course, there are some points which could be improved: we 

did not use Voronoi diagrams, and 4 speakers are not a representative sample. 

A significant problem is the eombination of phone components (that is 

classified speech frames) into larger phone segments. Initially a heuristie set of 

rules was used [11]. Meanwhile relaxation labeling and hierarchic syntactie 

combination was tested. Best results were achieved by the last approach. It 

starts on level 4 of the hierarchy with two broad classes of phone components 

which are voiced non-fricative and others. Frames are combined on this level by 

a formal grammar. Levels 3, 2, and 1 refine the classes to 7 vowels, 6 fricatives, 

3 liquids, 3 nasals, 3 plosives, and silence and another formal grammar is used on 

every level. Finally on level 0 51 phone components are distinguished. A 
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comparison using 23 phone components gave 47% correct segments with relaxation 

and 55% with syntactic segmentation; using 40 phone components we obtained 

40% correct segments with heuristic segmentation and 46% with syntactic. 

To summarize: The presently used version of the Acoustics-Phonetics Module 

distinguishes 40 phone classes, the first alternative is correct in 46%, errors 

consist of 12% insertions, 12% deletions, and 42% wrongly classified segments. 

The training set consisted of 520 seconds continuous speech spoken by 6 male 

and 3 female speakers, the test set consisted of 85 seconds spoken by 2 female 

speakers who were not in the training set. 

Further work should explore the followig problems: 

1. Steps towards automated sample set acquisition. 

2. Speaker clusters to improve speaker independence. 

3. Use of phonological rules and of larger time context. 

4. Further improvement of classification and segmentation. 

5. Some additional phone classes, in particular diphthongs and perhaps nasals. 

3. FINDING WORDS 

If an initial segmentation is available, the next step is to find words in the 

segmented speech. This requires that a lexicon of known words is prepared and 

made available to the system. The first approach to word recognition was a 

straight-forward dynamic programming algorithm which compared every word in 

the lexicon starting with every position in the utterance [9]. This allowed us to 

obtain first results, but, of course, is not sufficient for solving the word rcognition 

problem. Meanwhile the status reported in [9,10J was changed and improved as 

follows: 

1. The lexicon was enlarged. 

2. Word finding is done in the two phases of word hypothesization and word 

verification. 
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3. The algorithm and the data structure for word hypothesization was improved. 

4. A first set of rules was developed to account for variations of pronunciation. 

An initial version of the lexicon consisted of a basic vocabulary covering the 

most frequent German words, a task oriented vocabulary concerning the task 

domain of German Inter City trains, and an augmenting vocabulary containing 

numbers, cities, and week-days. This gave 306 cardinal forms. Adding all 

possible inflexions resulted in a lexicon with 1380 words. The lexicon is being 

augmented continuously and contains presently 3600 words. A word in the 

lexicon is represented by (spelling, number, pronunication, syntax, semantic). The 

number is a unique identification of every word, the spelling gives the usual text 

form, the pronunciation the standard phonetic representation. The entry syntax 

lists all possible syntactic classes and features of this word. The entry semantic 

lists, for every syntactic class, all relevant meanings together with case and 

valency information. Therefore, the information in the lexicon is a link between 

acoustics-phonetics, word finding, syntactic and semantic processing. Due to the 

large amount of syntactic and semantic information it is fairly time consuming to 

build up the lexicon. Up to now inflexions were added manually to the lexicon, 

but now it will be sufficient to enter the cardinal form and the inflexions will be 

generated by a program. Inflexions do not contain syntactic and semantic 

information, but have a pointer to the cardinal form where this information can 

be found. In addition a lexicon of about 8000 words without syntactic and 

semantic information is available [161 and is used up to the word recognition 

level. 

The lexicon is to be considered as a raw information from which specialized 

knowledge used by various modules is derived. The type of specialization depends 

on the module and its processing algorithm and will be discussed as necessary. 

As suggested, for example, in [3] the problem of finding words was split into 

the two problems of hypothesizing a small subset of words and verification of 

that subset. The subset should be hypothesized quickly, be as small as possible, 

and should contain the correct word with high probability. A word hypothesis 

consists of the three essential components 
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(position, word, score), 

and several auxiliary components like syntactic word class, status of the 

hypothesis, or a unique number. The three essential components have to be 

determined in the process of word hypothesization. After a subset of words is 

obtained all the words in it are carefully verified with respect to the utterance. 

Basically, the verification process should refine the essential components of the 

word hypothesis, in particular give high score to the correct word and low to the 

wrong ones. 

Two approaches to word hypothesization are investigated which will be 

referred to as compressed lexicon tree (CLT) and feature addressed lexicon (FAL). 

A CLT is obtained by combining similar phone classes to superclasses. This 

reduces the number of confusions and also reduces the size of the lexicon since 

certain words become identical if they are represented by phone superclasses. 

Compression of the lexicon by means of broad phonetic classes was also suggested 

in [17J and the set of words becoming identical after compression was called a 

cohort. After some comparisons we obtained best results by using the 

transinformation as a criterion for deriving phone superclasses - in fact, this 

criterion is much better than error rate and also gave better results than a 

heuristic approach. The derivation of superclasses starts with a phone confusion 

matrix provided by the Acoustics-Phonetics Module. One may view the spoken 

phones as symbols entered into a channel and the recognized phones as symbols 

at the output of a channel. The transinformation gives the amount of 

information passed correctly from the input to the output, and it may be 

computed from the phone confusion matrix. Phone superclasses are obtained by 

merging two or more rows and columns of the phone confusion matrix in such a 

way that the transinformation is maximized. If the error rate is used as a 

criterion, rows and columns are merged to minimize error rate. Experiments 

showed that the error rate as a criterion tends to yield very few and very large 

superclasses whereas transinformation yields fairly many ~nd small superclasses. 

This is a first hint that phone superclasses derived from maximization of the 

transinformation should be useful; this idea was confirmed by experiments with 
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compression of the lexicon and by several cohort statistics. The size of a cohort, 

that is the number of words becoming identical when represented by phone 

superclasses, should be small. Table 1 gives some cohort statistics for superclasses 

obtained from maximization of transinformation, minimization or error rate, and a 

heuristic approach. This shows clearly the superiority of transinformation with 

List of tables 

transinformation error rate heuristic 
phone super classes phone super classes 

5 18 5 18 5 

Maximal cohort size 9 13 157 31 14 

average cohort size 1. 31 1.09 10.1 1.6 1.58 

number of cohorts 928 1113 122 755 770 

Table 1 Some cohort statistics obtained from a lexicon with 1222 words using 5 

and 18 phone superelasses derived by three criteria 

respect to cohort statistics. But also the five heuristically determined classes of 

vowels, fricatives, plosives, nasals, and remainder is quite satisfactory. 

Presently, experiments are made using 18 phone superclasses which contain 

87% of the initial transinformation in the full set of 40 phonemes (5 superclasses 

contain 58% of the initial transinformation). The lexicon is compressed to 

cohorts using these 18 classes and represented by a tree which is stored as a 

linear string of phonetic symbols together with some bookkeeping information; in 

particular, for each node of the compressed lexicon tree (CLT) representing a 

cohort this information contains a number identifying the cohort. From the 

cohort number the set of words in it can be determined. The CLT is matched 

with the phonetic string of the input utterance and for each word we compute 
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the probability of observing the phonetic string when this word is pronounced 

[18]. This computation takes care of insertion and deletion errors in the phonetic 

string. The various transition probabilities are trained iteratively [19]. The result 

is a position of the word within the phonetic string and a probability of the 

word. The main steps of the algorithm are given in Fig. 5. However, the 

Wor dH h' t' Mdl y~ot eSlZa lon o u e 

in..Q.ut: stri~ of ~hone segments 
transcri£.ti on of ~hones to superc 1 asses 
match cpmpressed lexicon tree with input by stochastic automaton approach 
select n best word positions 
expand cohort hypotheses into word hypotheses 
co~utation of word score 
output: m best scoring word hypotheses 

Fig. 5 The main steps of word hypothesization in the CLT 

probability of a word is not used as a measure of priority for further processing 

because it depends highly on the length of a word. Instead, a score is computed 

by estimating mean and variance of word probabilities for each length and then 

normalizing probabilities with respect to mean and variance. 

A first experiment with 20 sentences and a small lexicon of 100 words gave 

an average inverse rank [20] of word hypotheses equal to 0.46. Computation time 

on a PDPll/34 is about 2 minutes per sentence with a lexicon of about 1400 

words. An example of some word hypotheses is shown in Fig. 4. 

The CL T approach described above is basically a top-down approach because 

every cohort in the CLT is matched to the input utterance. A truly bottom-up 

approach is the feature addressed lexicon (FAL). The idea is to use phonetic 

features like phone tripels as entries in a F AL where each entry gives the set of 

words having this feature. By using several features, for example several phone 

tripels, the set of words having these features will become smaller. This 
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approach is now being implemented and tested and results will be reported later. 

The set of word hypotheses is then verified using the full set of phones and 

taking into account variations of pronunciation. Since word hypotheses contain 

the three components (position, word, score), the verificiation process can 

concentrate on a particular word and a particular interval of the utterance. Two 

versions of a Word Verification Module are under investigation; the first uses the 

string of phonetic segments provided by the Acoustics Phonetics Module, the 

second uses the string of labeled speech frames. The structure of the first 

version is given in Fig. 6. A set of about 140 phonological rules was developed 

Word Verification Module (segment level) 
in.Q.ut: string of phone segments, word hypotheses 
select high scoring unverified word hypothesis 
apply phonological rules to obtain pronunciation graph 
match graph to interval of utterance 
the word score is that of the best scoring pronunciation variant 

outRut: (EoS iti on, word, score, auxiliary information~ 

Fig. 6 The main steps of word verification on the segments level 

to generate -pronunciation variants of words from the standard phonetic 

representation contained in the lexicon. An average number of three variants per 

word is generated. The pronunciation variants and the standard pronunciation 

are represented by a pronunciation graph. Pronunciation variants occur often at 

word endings, voiced plosives and some frequently used words like articles, 

conjunctions and prepositions. 

The pronunciation graph is used as input of a stack-decoding algorithm [18] 

which matches the graph to the relevant interval of the utterance by means of 

dynamic programming. This results in drastic improvements of scores of the 

correct word hypotheses in some cases, but also may result in improvements of 
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the wrong word. This effect, which occurs if the correct word is pronounced 

clearly, needs further investigation and may require changes in some of the rules. 

The approach to word verification by matching a word hypothesis with labeled 

speech frames is presently being implemented and tested. 

Further work should explore the following points: 

1. Incorporation of pronunciation variants already on the hypothesis generation 

level. 

2. Phonological rules to account for pronunciation variants between successive 

words. 

3. Thorough experimental investigation of the performance of the various 

modules using lexicons of varying size. 

4. Improved estimates of various parameters used in the matching algorithms, 

for example deletion, insertion, and confusion probabilities. 

5. Take care of top-down word hypotheses generated from the Syntax Module, 

for example. 

4. UNDERSTANDING THE MEANING OF AN UTTERANCE 

The result of word matching is a set of word hypotheses which may have 

gaps, competing and erroneous hypotheses, and also may span the utterance by 

one or several sequences of (nearly) adjacent words. In the three main steps of 

syntactic, semantic and pragmatic analysis it is tried to find one unambiguous 

meaning for a spanning sequence of words or for some disjoint groups of words. 

This serves two goals. The first goal is to reduce the ambiguity of word 

hypotheses by using additional knowledge and thereby improving recognition of 

words. The second goal is to relate a sequence of words to the system's internal 

representation of linguistic knowledge, and by "understanding" we mean this 

process of relating an input to internal knowledge of the system. 
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In this paper the terms; syntax, semantics, and pragmatics are used as 

defined in [21J. Syntax studies the formal relations of .signs to one another. 

Consequently, the Syntax Module only treats properties of and relations between 

words and word classes. Semantics studies the relation of signs to the objects to 

which the signs are applicable. Therefore, the Semantics Module considers 

properties and relations of words and word classes resulting from their signifying 

certain objects, events, and concepts. Pragmatics deals with the relation of signs 

to interpreters. Therefore, the Pragmatics Module analyzes a word sequence with 

respect to the particular task domain. No task specific knowledge is available in 

the Semantics Module, and no knowledge about the general meaning of words is 

available in the Syntax Module. The advantage of this approach is a clear 

conceptual structure of the system and independence of modules - a change of 

the task domain would require a redesigned Pragmatics Module but no changes in 

syntax or semantics (probably the lexicon would have to be augmented by a task 

specific vocabulary, too). A disadvantage is a certain loss of processing efficiency. 

The three modules form a representational hierarchy in the sense that the 

Pragmatics Module requires a semantically interpreted word string, and the 

Semantics Module requires a syntactically analyzed string. 

At present, the three modules are in different states of completion; the most 

advanced module is the Semantics Module, and this one will be described in some 

detail below. The early version of the Syntax Module is presented in [9,10J. It 

used a fairly elaborate ATN-grammar of German language and an island parser. 

The problem with this approach is the combinatoric explosion due to the fairly 

large number of word alternatives and the rigid constraints imposed by the 

ATN-rules, for example the case-number-gender agreement in 

Therefore, we plan a redesign of the module according to Fig. 7. 

noun groups. 

The two main 

points are that a fast prescanning of words will be done to detect a few 

sequences of words belonging to syntactically allowed word classes and that the 

rigidity of syntactic constraints will be dependent on the score of words. For 

example, the case-number-gender agreement may depend only on some endings of 

words which are hard to recognize and, therefore, this should be checked only for 
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d 1 Syntax Mo u e 
~ verified word hypotheses 
determine triples of words with syntactically allowed s~uences of word classes 
determine larger sequences of words with syntactically allowed word class 
sequences 
select some high scoring sequences of words 
perform syntactic analysis with score - dependent rules 
generate top-down word hypotheses in gaps of syntactic analysis 
outDut: syntactic constituents of sentences represented in a syntax analysis tree 

Fig. 7 The structure of the module for syntactic analysis 

very high scoring words. 

AB shown in Fig. 8, the Semantics Module takes 88 input syntactic 

constituents and gives a semantic interpretation represented in a semantic net 

structure. Fig. 8 treats the case that a syntactic constituent spans the utterance, 

Semantics Module 
~t: syntactic constituents spanning the utterance 
select high scoring syntactic constituent 
perform local interp_retation of immediate constituents 
instantiate case frames of the verb 
match immediate syntactic constituents to case frames 
interpretation of adjuncts 
determine top-down word or constituent hYQotheses from open case slots 
select best scoring case frame 
out~ut: semantic net representation of interpreted constituent structure 

Fig. 8 The structure of the module for semantic analysis of syntactic 

constituents spanning an utterance 

but also constituents spanning only part of the utterance can be processed. The 

semantic nets are structured 88 suggested in 122). Two basic components of a 
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semantic net are the concept and the instance. Both consist of attributes which 

describe parts as well as properties (both may be concepts themselves). A 

concept is a definition of a word like 'tomorrow', or a class of objects like 

'mammals', or an action like 'to eat', or a relation like 'left to'. An instance 

represents an individual member of a class defined by a concept. It is also 

possible to derive a concept as a specialization from a more general concept. 

The specialization inherits all attributes of all those concepts which are more 

general, except the attributes which are explicitly modified or differentiated. The 

semantic nets were implemented using GRASPE as an extension of SIMULA. 

The 'raw knowledge' about semantic properties is manually prepared and 

stored in a dictionary, where each word has an entry as described in Section 3. 

By semantic analysis the dependencies and relations within a sentence are 

investigated and a formal representation of the meaning is obtained. The 

meaning concerns functional and logical or deep case relations within a sentence, 

the dependency structure or the valency of word groups, and aspects of text 

consistency and coherence. The main idea is that the structure of a sentence is 

determined by the leading verb, the so called nucleus. This is the topic of the 

valency and case theory. The nucleus has the ability to attach dependent 

constituents, and this ability is called its valency. The obligatory and optional 

dependent constituents of the nucleus largely determine the structure of a 

sentence. Often, different meanings of a verb give rise to different structures. In 

case theory the functional roles and logical relations of parts of a sentence are 

treated with respect to the nucleus. The structure implied by a certain meaning 

of the nucleus is represented in a case frame, and an example is given in Fig. 9. 

A case frame of a verb is a concept in a semantic net and obtained by a 

preprocessor from the lexicon containing the raw semantic knowledge. 

The tasks of semantic analysis are to choose an appropriate meaning of a 

word out of the different meanings represented in the dictionary (different 

meanings of 'to get', for example, in 'get up', 'get started'), to recognize semantic 

ambiguities (in sentences like 'he wants a train to go to Munich'), to point out 

semantic anomalies (which may arise due to competing alternatives in word 



www.manaraa.com

obfigatory 

291 

Noun group 

{ CASE = nominative 
-1...JE--':-';";;"';"'- CLASS is HUMan / BEaSt 

obligatory 

Noun group 

1...J;:::~"'"'-'-- CASE = accusative 

obligatory 

Noun group 

{ CASE = nominative 
k--- CLASS is HUMan 

obligatory 

Subordinate clause 

~~----- conjunction = dafJ 

obligatory 

Noun group 

{ CA Sf = nominative 
k---:-- CLA SS is HUMan 

obfig ator y 

Noun group 
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recognition), to relate paraphrases (that is to map differently worded sentences 

with equivalent meaning to the same representation), and to support recognition 

by generation of top-down hypotheses. This is accomplished by three 

fundamental operations of the Semantics Module which are local interpretation, 

contextual interpretation, and top-down hypotheses. The realization and 

performance of these operations will be treated in the following. The reader 

should note that all examples which follow are taken from German language and 

are translated word by word. Therefore, the examples may sound awkward to 

the English speaking reader. 

Local interpretation operates on syntactic constituents provided by the Syntax 

Module. Presently the five constituent types noun group NG, prepositional noun 

group PNG, adjective group ADJG, verbal group VG, and sentence S are 

available. The basic idea with local interpretation of the first three constituent 

types is that certain word classes (like prepositions) impose semantic constraints 

on other word classes (like nouns) with which they can be combined. These 

constraints are expressed in the dictionary by the feature SELECTION, which 

means that a preposition used with a certain meaning 'selects' a noun with a 

certain meaning. 

For example, in the PNG 'mit der Bahn (with the train)' the word 'mit 

(with)' has four meanings in the dictionary, among them only one with class 

'INSTRUMENT' and selection 'THING'. The word 'Bahn (train)' has five 

meanings, among them only one with class 'TRANSPORT'. Class TRANSPORT 

is a specialization of class THING, and therefore, the INSTRUMENT meaning of 

'mit' is compatible with the TRANSPORT meaning of 'Bahn'. By checking all 

possible combinations of the different classes and selections, all consistent 

interpretations are obtained. In the above example it turns out that there is 

only one compatible combination. Even without a larger context the compatible 

alternative meanings of a constituent are much less than the combinatorial 

number. A compatible combination is given two features, the semantic class of 

the noun and that of the preposition. 
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Local interpretation of a constituent type VG only consists of generation of 

case frames of the form shown in Fig. 9. For each meaning of a verb in the 

dictionary a separate case frame is generated by a preprocessor. This is all that 

can be done by using the local information of VG only. If a constituent type S 

is locally interpreted, each individual constituent, that is NG, PNG, ADJG, and 

VG, is locally interpreted as described above. 

The basic idea of contextual interpretation of a sentence or a major part of 

a sentence is to take the case frame obtained from local interpretation of a VG 

and to try to match the constituents PNG, NG, ADJG, also obtained from local 

interpretation, to attributes of the case frame. For a particular verb there 

usually will be several meanings associated with different case frames. The word 

'finden (to find)' has five meanings listed in the dictionary, and the ease frames 

of three of them are shown in Fig. 9. When matching constituents to ease 

frames the number of successful matches will depend on whether a case frame fits 

to the intended meaning of the verb in the sentence or not. Therefore, a score 

is computed for each contextual interpretation, and the best scoring interpretation 

is selected. 

The contextual interpretation IS realized by three main functions: Frame 

Sentence Match (FSM), Frame Constituent Match (FCM), and Supplement 

Contextual Interpretation (SCI). We discuss these functions using the example 

sentence 'Er findet seine Fahrkarte nicht (word by word translation: He finds his 

ticket not)'. The Syntax Module yields a syntactic representation which is 

mapped to the network structure shown in Fig. 10. Since word recognition of 

the system is not perfect, there may be competing and erroneous word hypotheses 

which will give rise to several competing syntactic hypotheses. Every syntactic 

hypotheRis has a score which is an estimate of its reliability and importance. 

The function FSM selects a good scoring syntax hypothesis of type S (sentence), 

which already was processed by the local interpretation operation. For every case 

frame of the verb in S an inexact matching operation of type 'concept-instance' is 

started. The type 'concept-instance' means that the concept of the case frame is 

matched with the instance S, and as many empty attributes of the case frame 



www.manaraa.com

294 

~.--- • Er findet seine Fahrkarte nicht .. 
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Fig. 10 Network representation of the syntax of an example sentence 
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"Er findet seine Fahrkarte nicht" 

dec I arative 

NUCLEUS 

AGENT 

OBJECT 

STRUCTURLELEM 

STRUCTURE-ELEM 

Fig. 11 Result of matching a sentence to a case frame of a verb 

are filled by constituents in S as possible. The result is shown in Fig. 11. It is 

apparent that the agent and object attribute of the case frame 'finden 1 l' is 

matched by NGI and NG2, respectively, of the sentence S. If 'finden 1 4' were 

used, the obligatory attribute 'manner' of the case frame could not be matched 

by S. Therefore, this match is scored less than that of 'finden 1 I' and the 

meaning of 'finden 1 l' is selected. 

Whereas the function FSM requires a syntax hypothesis of type S, the 

function FCM also accepts syntactic constituents and does not require a complete 

sentence. FCM was implemented in order to process also intermediate results of 

the syntax module. The function SCI is used to attach constituents which are 

not part of the case frame but occur additionally in the sentence (see ADVI in 

Fig. 11). 
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The semantic interpretation is done by local and contextual interpretation 88 

described above. Generation of top-down semantie hypotheses is a feature whieh 

is supposed to be useful in speech undertanding but whose performance was not 

yet tested. The idea is to make predictions on the basis of so far unmatched 

obligatory attributes of a case frame. 

The Pragmatics Module has not yet been implemented, but its operation is 

specified as shown in Fig. 12. Whereas the Semantics Module extracts general 

P t' M d 1 ragma lCS o u e 
in"'p:"ut: instantiated case frames 
select high scoring case frame instance 
perform matching of semantic categories to domain dependent concepts 
perform matching of semantic deep cases to pragmatic concept roles 
infer inquiry type from role structure and from situation d~endentexpectations 
try to fill obligatory attributes of the inquiry concept by inferences and 
data base r~uests 
outout: semantic net representation of user inquiry 

Fig, 12 The main steps of pragmatic analysis 

linguistic information, the Pragmatics Module relates this to internal task specific 

knowledge. In our system we chose inquiries about train schedules as an example 

of a task domain. The relevant knowledge is represented in a semantic net 

containing five general concepts for five general types of inquiries, for example, 

inquiries about train connection or seat reservation. Each of the concepts has 

several obligatory and optional attributes. For example, the concept 'train 

connection' has obligatory attributes 'source' and 'goal'. Pragmatic analysis will 

try to match the obligatory attributes of a concept in the pragmatics net to 

attributes found by semantic analysis (see Fig. 11, where, for example, no source 

or goal attribute is present). If an obligatory attribute cannot be matched, this 

will be used to derive a question which the system asks the user. 
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Pragmatic analysis completes what is meant here by understanding the 

meaning of an utterance. If this analysis is successful, the acoustie signal is 

related to the system's internal knowledge. 

Future work should explore the following points: 

1. Efficient realization of syntactic and pragmatic analysis. 

2. Refinement of the ATN grammar. 

3. More general and powerful semantic analysis. 

4. Thorough experimental investigation of the three modules. 

6. GIVING AN ANSWER 

Up to now the system always considered only one utterance and tried to 

recognize and understand it. Obviously this is not sufficient for a system which 

is supposed to carry out a dialog with a user. In the following short example S 

refers to utterances of the system, U to those of the user: 

Ul: When is there a train to Munich? 

81: At what time would you like to start? 

U2: As soon as possible. 

82: You may take the train at 12:30 hours. 

U3: When does it arrive there! 

83: At 13:45 hours. 

U4: Does it have a dining car? 

84: Yes. 

These few utterances demonstrate that a dialog is possible only if both 

partners can assume that some general and common knowledge is available and if 

they both relate and understand a sequence of utterances, not just one isolated 

utterance at a time. For example, in Ul the user assumes that the system has a 

reasonable default value for the starting point of the journey, and so does the 

system because it does not ask back. In U2 the user also assumes that, the 
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system has knowledge about time. Fl1rthermore, U2 (or also S3, 84) are not 

understandable as isolated utterances, but only in the context of the dialog. The 

objects referred to by "it" and "there" in U3 have to be determined from 82. 

With S 1 the system pursues a certain intention which is to give the user the 

train best fitting to the user's goals. There is a uniform topic through U1 to S3 

which may be called "inquiries about train schedules", and there is a change of 

the topic in U4, S4 to "inquiries about an object", in this case about a particular 

train. 

The above few examples demonstrate that finding an answer by the system 

raises a bulk of new problems. In EVAR these problems are treated by the 

following modules: 

1. The Dialog Module. - It memorizes the context and meaning of a sequence 

of utterances and relates a new utterance to the former ones, and it 

determines the components of an adequate answer. 

2. The Retrieval Module. - It retrieves the facts (in our case, for example, a 

departure time) meeting the requests determined by the Dialog Module. 

3. The Answer Module. It translates the internal representation of an 

answer to a German text. The text may then be printed or spoken by a 

speech synthesis device. The Dialog Module is specified and an interactive 

test facility was realized. The main structure of the module is shown in 

Fig. 13. Some of its functions still have to be realized. The Retrieval 

Module is presently under development. A version of the Answer Module 

using an intermediate representation of the answer was realized, but the 

translation of the output of the Dialog Module to this intermediate 

representation is not yet available. Fig. 14 gives the main steps of answer 

generation. Since finding an answer still needs a good deal of additional 

work, it seems premature to give further details in this paper. 
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Dialog Module 

input: semantic net representation of user inquiry generated by the 
IPragmatics Module 
resolve references and complete elliptic phrases 
update memories of syntactic and semantic structures, 
of mentioned objects 

of actual topic, and 

draw inferences from expectations on actual discourse move 
match utterance to discourse scheme in order to determine actual dialog 
state 

choose system reaction: determine content of answer 
else ask back 

if inquiry is complete, 

update memories by system utterance 
output: internal semantic network representation of system utterance 

Fig. 13 An overview of the dialog facility III EVAR 

Answer Generation Module 
input: internal network representation of system utterance 
translate network representation to caseframe-oriented intermediate 
structure 
determine morphological surface structure from valency features and deep 
case rules: noun inflection; pro-form, question form, article selection 
generate ellipsis and anaphora 
inflect verb by tense and mood 
determine phrase order 
transform dependency tree to terminal string 
output: textual form of answer 

Fig. 14 An outline of answer generation 
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8. CONCLUDING REMARKS 

We are convinced that speech understanding and dialog systems will become 

standard devices at some time, but we are careful not to predict at what time 

because this will depend to a good deal on the effort of research and 

development which can be afforded. 

The modular structure of EV AR makes the system extremely suited to a. 

multiproceBBOr realilation, but we do not have the resources to achieve this. 

Presently, the processing up to the word level is done on a DEC PDP 11/3., the 

remaining processing is done on a CDC CYBER 8.5. 

Concerning the whole system future work will have to consider the following 

points: 

1. Enlargement, refinement, and correction of available linguistic data bases from 

which specialised knowledge of the modules is derived. 

2. Incorporation of prosodic information. 

3. Evaluation of user parameters (speak too loud, too fast and so on). 

4. More efficient common data base. 

5. Investigation and comparison of different control strategies. 

6. Improvement of the available processing modules. 
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I INTRODUCTION 

SERAC (Expert System for Acoustic-phonetic Recognition) is an Expert 

System that applies Artificial Intelligence techniques to Automatic Speech 

Recognition. 

Rule-based Speech Recognition Systems like the KEAL C.N.E.T. System 

MERCIER 82 have now become too much complicated to be implemented in the 

form of classical sequential programs. A new methodology is required to express 

the knowledge of human experts which is not always well formalized. 

Furthermore computer programs must be developed in an environment that makes 

it possible an incremental improvement of the knowledge. 

The Experts Systems methodology has been successfully applied to such 

different problems as medical diagnosis MYCIN SHORTLIFE 78, mass 

spectrograms interpretation (DENDRAL BUCHANAN 71), geological classification 

(PROSPECTOR DUDA 82) and speech understanding (HEARSAY-ll 

HAYES-ROTH 77, CARBONELL 84, DE MORI 82). These studies have shown 

that it is possible to build tools that can take into account great amounts of 

empirical knowledge to solve problems in very specific domains. 
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New Systems and Architectures for Automatic Speech 
Recognition and Synthesis. Edited by R. De Mori and C. Y. Suen 
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The SERAC system was designed to structure the knowledge acquired with 

previous experience with the KEAL system and to provide a flexible tool for 

maintaining, improving and growing this knowledge. Since the whole knowledge 

required to build a Speech Understanding System is too wide to be taken into 

consideration all at once we decided to restrain our domain to the 

acoustic-phonetic analysis of the speech signal as a first step. 

Our first task was to define a representation language for the KEAL acoustic 

phonetic knowledge. An object-oriented problem-driven rule-based language of the 

class of the OPS family (FORGY 81) appeared to be the most appropriate for 

this purpose. The production rule formalism was chosen for its ability to express 

domain expertise in a declarative way. A problem-driven forward chaining 

inference engine was introduced for encoding the problem resolution strategy into 

the language. 

n REVIEW OF THE KEAL SYSTEM 

fl-1 SYSTEM ORGANIZATION 

The KEAL Speech Understanding System has been developed to investigate 

the possibility of using voice as a communication support between a user and a 

computer for several tasks. 

The present version of this system (Fig. 1) can be described as a set of 

components which successively perform the acoustic, phonetic, lexical and syntactic 

analysis in order to reconstitute the uttered sentence from the speech signal. 

The comprehension part of the system involves a semantic interpreter and a 

dialogue manager able to perform automatic inquiry in a limited domain. 

The speaker adaptation component of the system involves a matching 

program for extracting the new phonetic segment references and adjusting of the 

phonetic parameter representing the acoustic-phonetic knowledge. In the case of 

mapping errors (less than 10%) the limits of the segments have to be adjusted by 
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Fig. 1 THE KEAL SYSTEM 
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Anavezout Lavar .. which. also in 
the Breton language. means 
automatic speech recognition 
system. 
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hand. 

ll-2 ACOUSTIC-PHONETIC DECODING 

ll-2-1 PREPROCESSING AND FEATURE EXTRACTION 

Acoustic-phonetic decoding transforms the continuous speech signal into a 

series of discrete hypotheses. The units currently taken into account by the Keal 

phonetic analyzer are the syllable, the phoneme, the phone and the feature. 

In a first step, a spectral analysis of the digitized signal is made every 13.3 

ms using a simulated channel vocoder (14 or 16 fIlter banks). The energies 

within each frequency band are computed by a signal processing routine 

computing a 256-point D.F.T. and using a 20 ms window. This analysis results 

in a series of vectors with n components called samples or frames. In parallel, a 

few additional parameters are associated with each 13.3 ms frame, namely signal 

amplitude, pitch, energy and spectral center of gravity measurements within 

selected frequency bands. 

The other parameters used are the spectral derivative with respect to time 

and the frequencies and amplitude of the first three maxima of the vocoder 

spectrum and the zero-crossings measurements. 

Segmentation of continuous speech into phonetic units as well as labelling are 

progressively refined through the following steps (Fig. 2) by using this set of 

parameters. 

ll-2-2 CENTISECOND FRAME LABELLING 

Based on a set of acoustic cues derived from these parameters, a set of 

phonetic features such as vowel, consonant, silence, fricative, open, closed, front, 

back, voiced, unvoiced, buzz-bar is assigned to each centisecond frame. The rules 

used for this primary labelling based on spectral information are 

speaker-independent and relatively simple. 
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SEGMENT A TION AND RECOGNITION 
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PHONE RECOGNITION 

LA TTiCE OF PHONEMIC HYPOTHESES 

Figure 2 
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By computing linear decision functions between phone prototypes and a 

speech frame represented by the spectrum plus the additional parameters this 

classification is refined (Fig. 3). 

ll-2-3 SEGMENTATION INTO PSEUDO-SYLLABLES 

The basic principle behind this segmentation is the search for the syllable's 

vowel nucleus; this is done in three steps: 

1. First, the energy curve measuring the weighted energy in the frequency band 

250-4200 Hz is split into consecutive segments computed each containing an 

energy maximum (Fig. 4). Consecutive segments, for which there is not a 

significant maximum of energy in low frequency (250-850 Hz) are 

concatenated. 

2. These segments or pseudo-syllables, are then investigated in order to see 

whether or not they contain a vocalic nucleus. The following acoustic 

features are computed: 

The low frequency energies measured at four instant of time 

corresponding respectively, to the peaks of the preceeding and current 

pseudo-syllables and to the minima of energy before and after the 

current peak of energy. 

The amplitudes of the first formant computed at the same instants of 

time. 

The number of "vowel" frames in the pseudo-syllables. 

- A measure of dissimilarity between the current potential vocalic nucleus 

and the preceeding one. 

A feature indicating the presence of a significant proportion of "voiced" 

frames surrounded by "unvoiced" frames. 
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A value measuring the plausibility of there being a vocalic nucleus in the 

"potential" pseudo-syllable is computed by means of a linear combination of these 

features. When this plausibility value is equal to zero, the current segment is 

merged with the preceeding pseudo-syllable. 

3. At the end of this process, the boundaries of the pseudo-syllable are 

determined. This is done by taking the stationary portion between two 

vocalic nuclei which contains the least energy and designating its first frame 

as the boundary. 

Segmentation is about 95% correct when sentences are uttered normally. 

Results are little lower for rapid speech. 

11-2-4 SEGMENTATION INTO PHONES 

An obvious property of the speech signal is that it is composed of a 

sequence of stationary or transient events that can be displayed for instance, by 

the magnitude of the derivative with respect to time, P(t), of the spectral 

envelope (Fig. 5). Consecutive low values of P(t) delimit a stationary portion in 

the signal, which may contain the main features for certain phonemes, whereas 

high values of this curve indicate a transient event between phones which may 

include essential features of one or both of these phones. 

In Keal, vowels are first located within the stationary zone around the 

maximum of energy of each syllable. In addition this zone must contain a 

sufficient proportion of vowel "frames" . Then sequences of stationary and 

transient events are located between each vocalic nucleus. These segments form 

the new framework within which the main phonetic features will be identified. 

11-2-5 VOWEL RECOGNITION 

Based upon an idea proposed by STEVENS (1981) and adapted to our 

spectral data by R. Gubrynowicz (1983) acoustic cues measuring spectral areas 

between a line coresponding to the amplitude of the first formant (or the second 

formant) and the spectrum curve between some frequency band are used for 
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separating the french vowels into the following categories: open, closed, mid and 

front, back, central. A second algorithm [ROSSI 81] based on the notion of 

distinctive vowel features, permits a hierarchical recognition of vowels. In a vowel 

recognition experiment using isolated words pronounced by three speakers, ROSSI 

found that the correct vowel was among the top two choices about 90% of the 

time. 

This feature-based vowel recognition, which has to be improved for 

continuous speech, is not still completely integrated in the KEAL system. 

Speaker-dependent linear decision functions are used to assign one or more labels 

to each 13.3 ms frame. Labels that are assigned with a high frequency in the 

vocalic segments are stored in the final phonetic lattice. This procedure of frame 

labelling also makes it possible to detect diphthongs and sequences of two vowels 

that have been incorrrectly merged into a single segment (Fig. 6). We compute 

the temporal center of gravity along the time axis for each of the phone 

candidates. If the temporal center of gravity of any the phone candidates within 

a segment is sufficiently far away in time from those of other candidates, two 

segments may be detected. In order to confirm the existence of two segments in 

such a case, center of gravity, degree of opening or place of articulation 

parameters must have changed within the segment. 

n-2-6 CONSONANT RECOGNITION 

The following procedure is used for recognizing ·consonant" segments. 

For each stationary segment placed between two vocalic nucleus, the 

proportion of ·voiced" and ·unvoiced" frames is measured. If this 

segment corresponds to a phone, then the degree of voicedness or 

voicelessness is given by this measure. Conversely, for stops, for 

instance, a second cue of voice onset time (V.O.T.) may be necessary 

when there is no buzz-bar. This cue is measured within the transient 

segment. In KEAL, V.O.T. is a function of the number of voiced or 

unvoiced frames at the beginning of the burst. The percentage of 

correct identification of the voiced-unvoiced feature is about 95%. 
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The feature ·stop is detected when a lOne of silence or weak low 

frequency energy (buzz-bar) is included in the stationary segment and 

followed by a strong burst and a sudden variation of the spectral 

parameters (energies and centers of gravity of formants). The 

percentage of incorrect identification of this feature is about 5%. 

The feature ·fricative" is assigned if the segment is composed of enough 

frames with the label "fricative"; and the rule condition for assigning 

the "fricative" label to a frame is: "The spectral center of gravity and 

zero-crossings must be higher than some fixed thresholds". 

A stationary segment will be labelled "nasal" if it is composed of 

enough "potentially nasal spectral frames" and if some contextual and 

temporal criteria hold for each frame (GUBRYNOWICZ, 1984). 

A liquid /1/ or /r/ will be detected after a plosive sound if there is at 

least one maximum in the energy curve together with enough energy at 

low frequencies. Fig. 7 gives performance of recognition of a few 

feature classes. 

Recognition of the place of articulation of plosives is under way. For 

the moment, three main cues are taken into consideration: change in 

the first spectral center of gravity, the frequency region in which the 

spectral maximum of energy of the burst is located and change in the 

amplitude of the signal during the burst. The current performance is 

about 70% correct identification for a few speakers continuous speech. 

A refinement of this ordered labelling and final generation of phonetic 

hypotheses is provided by a "pattern matching" approach where 

prototypes depend upon a speaker or upon a category of speakers if 

they are obtained by clustering methods. 
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SEGMENTS ERRORS MISSED 

SEGM. 

VOICING 145 10 6 

NASAL 
n6 16 0 CONSONANT 

VOICELESS 77 0 1 1 FRICATIVE 

VOICELESS 
78 I I llSpreadlng) STOP 

VOICED STOP 39 2 15 0 

OAT A: Different Kinds of Continuous Speech Utterances 
(Mostly Phonetically Balanced French Sentences 

Figure 7 

NUMBER 
OF 
SPEAKERS 

3: 1F, 2M 

8: 3F, 5M 

5: IF, 4M 

3: IF, 2M 

3: IF, 2M 
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Linear discriminant functions for the phone inventory are computed from 

twenty phonetically balanced sentences. These functions divide the Rn space 

where the phone references are represented and make it possible to assign a 

phone label to each phonetic segment found in the utterance. Within each 

segment, multiple phones candidates are ranked by their degree of confidence. 

Following this procedure, a new set of rules combines the decisions of the 

feature-based hierarchical process and of the discriminant approach in order to get 

the final phonemic label. 

ll-2-7 BUILDING THE PHONEMIC LATTICES 

The output of the phonetic analyzer is given in the form of segments, each 

with the following information: reliability value, beginning and ending time of 

the segment, candidate phonemes ranked by likelihood score, number of the 

syllable to which the segment belongs. This lattice is then given to a word 

spotter able to make hypotheses or verifications about the possible sequence of 

words in an utterance. 

Fig. 8 gives an example of phonetic recognition obtained by the phonetic 

analyzer. 

ll-2-8 PHONETIC KNOWLEDGE ACQUISITION AND SPEAKER ADAPTATION 

In order to evaluate the coefficients of the linear discriminant functions used 

to separate the phoneme classes, the following procedure has been designed. 

The phonetic segment references necessary for building the learning set 

are automatically extracted by using a matching program that maps the 

acoustic phonetic lattice given by the phonetic analyzer onto an ideal 

phonemic transcription of the words or sentences of the refrence data set 

and onto their corresponding acoustic representation (Fig. 9). In case of 

mapping errors (less than 10%) the limits of the segments have 

eventually to be adjusted (or deleted) by hand, then providing the 

correct acoustic samples (Fig. 10). 
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~ ADAPT A TION AND LEARNING 
~ 

STANDARD PHONEMIC 
TRANSCRIPTION 

MAPPING THE PHONEMIC 
LA TTICE ONTO THE 
ST ANDARD TRANSCRIPTION 

KEAL PHONEMIC LATTICE 

OLD PARAMETERS 

LEARNING OR ADAPT A 110N 
OF THE DECISION FUNCTIONS 

PARAMElERS 
j--------- --------, 
I EVENTUAL MODIFICATION I 

LE~~~~~Q~NE~~~~ __ J 
EXTRACTION OF REPRESENT A TlVE 

SAMPLES 

ACOUSTIC - PHONETIC - ANALYSER 
NEW 

PARAMETERS 

Figure 9 
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EXTRACTION OF THE PHONETIC SEGMENT 
REFERENCES 

I Ie 9 a I I 
~I Y ft,. ~ 

ST ANDARD Id i z n ce f I 

Ii G tI f'w 
EI UU A Z L 
U M E Z 

CODING D I Z N CE F 
PHONETIC DID CE Z 
LATTICE 

-i--fo--16-is-- SEliMENT BEIiiNINIi 

8 12 27 41 END 

YES ARE THE MAPPING 

RESULTS CORRECT? 

N U BAN 
y _____ ~ .. LL~LY __ . 
1 10 21 27 36 
9 20 28 34 46 

NO 

PHONEMES TO DELETE: 
IZI IN / 

Automatic alignment of Speech 'lith a 
Standard Phonetic Transcription 

Figure 10 
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n-2-9 RESULTS 

A recognition experiment was run on a few speakers' productions of 

continuously spoken, phonetically balanced sentences, without top-down information 

and using only the best choice for each segment in the phonemic lattice, a 

phonemic recognition rate of 55 to 60 percent was achieved. This rate is still 

too low, but what is interesting is that the recognition rate rises to 70% and 

80% when the top two and three choices within the phoneme lattice are taken 

into consideration, respectively. Fig. 11 shows percentage of phonetic recognition 

and syllabic segmentation. 

n-4 LEXICAL ANALYSIS 

The role of the lexical analyzer is to match each word of the task 

vocabulary against the phonemic lattice, in order to detect the word in the 

sentence. 

For achieving this goal, each word of the task vocabulary is given an ideal 

phonemic representation. If a word can have many pronunications, phonological 

rules are used to expand the lexicon in order to include all possible 

pronunciations. 

During the matching process, a matrix is built, its rows corresponding to the 

phonemes of the word to be searched and its column to the consecutive 

segements of the phonetic lattice. An element (i, j) of the matrix is set to 1 if 

the phoneme lying in the ith row appears in the list corresponding to the jth 

column. Each 1 denotes a possible starting point for a detection of the word. 

Each 1 is a possible end point. The whole matrix is searched for paths which 

connect a starting point and an end point and pass through a set of (i, j) cells 

of the matrix. These cells must contain the number one and have increasing 

values of i and j. Each such path corresponds to a word detection. Each 

detection then receives a similarity score w (with 0 ~ w ~ 1) which takes into 

account the degree of confidence for each segment and for each phoneme in the 

segment. Phoneme deletion, phoneme insertion, spreading or merging are also 

taken into 9.Ccount for computing this similarity score. The detection boundaries 



www.manaraa.com

322 

PERCENT AGE OF PHONETIC RECOGNITION AND 
SYLLABIC SEGMENT A TION 

TOTAL NUMBER 220 385 695 635 

RECOGNITION 60% 65% 55,1% 59 % 
PERCENT AGE :1 

RECOGNITION 78,1 85,5% 74,6% 73.57-
PERCENT AGE :1+2 

RECOGNITION 86,8 94,7% 85% 78.7 
PERCENT AGE :1+2+3 

NUMBER OF SYLLABLES 85 232 275 

SYLLABIC SEGMENT A TlON 97,7% 96% 97,5% 

SPEAKER 1 1 2 3 
30 PHONETICALLY 

TASk RECOGNITION OF NUMBERS ALANCED 5 ENTENCES 

Figure 11 
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are then adjusted to the syllable boundaries in order to simplify the sentence 

recognition process. Only detections with scores higher than a fixed threshold are 

kept for the sentence recognition step, in a word-lattice. 

11-5 PROSODIC ANALYSIS 

Using both fundamental frequency values and the duration of the vocalic 

nuclei determined by the phonetic analyzer, the prosodic module is able to find 

the main boundary of a sentence in which no pause has been automatically 

detected. This algorithm works like this (Fig. 13). 

A window of the size of three syllables is used to determine whether 

the central syllable is carrying a basic prosodic primary (P.P.C.) in 

terms of the durational variations of the three successive nuclei within 

the window and in terms of a particular shape of Fo contour across the 

nuclei: the vocalic nuclei corresponding to a local peak of durational 

contrast, and/or to a local peak of Fo contrast, and the vocalic nuclei 

with using Fo modulation are selected. 

Then they are ranked by order of decreasing value at the level of the 

sentence. 

The vocalic nucleus of the sentence with the longest duration is selected 

and if this nucleus is located at the end of the sentence, then it is 

replaced by the second largest nucleus. 

If this vocalic nucleus contains the highest or the second highest Fo 

peak, or the largest or the second largest Fo rise on a vowel, then it is 

interpreted as the main boundary in the utterance. 

On a total llumber of 253 sentences of various types spoken by 7 speakers 

this algorithm has correctly detected the main boundary for 80% of the sentences; 

15% have not been segmented and there is 5% errors (V AISSIERE 83). 
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n-6 SYNTACTIC ANALYSIS 

The role of the sentence recognizer is to search for the best sequence of 

word-detections of the word-lattice satisfying the grammatical constraints and to 

build the syntactic tree of the sentence. This algorithm has already been 

described in great detail (QUINTON, 1976). Briefly the language is described by 

a semantic context-free grammar and the parsing is based on EARLEY's 

algorithm. In addition, in order to avoid looking through the whole lexical 

lattice, only the best partial solutions are kept at each step, according to either a 

beam-search or a sequential decoding strategy. The result of the parsing, if any, 

is the recognized sentence associated with a score and a parse-tree. 

Then the role of the semantic interpreter is to get from the parse-tree the 

information needed for the dialogue-controller. This is achieved by a set of 

transformation rules associated with the syntactic rules. The result of these 

transformations is a set of n-uplets containing only that in the sentence which is 

relevant to the dialogue. This comprehension part of KEAL has been described 

in detail in GILLET 1982. 

n-7 RECOGNITION OF WORDS AND SENTENCES 

Preliminary results, when using the lexical analyzer of KEAL, give a word 

recognition rate varying from 88% to 98% on a limited vocabulary (19 French 

digits and operands). 

The programs corresponding to phonetic analysis, phonetic training, speaker 

adaptation and lexical word spotting are presently written in Fortran IV language 

and implemented on a SEMS M.225 mini computer. The speech data are 

digitalized through an A/D connected to a PDP 11/34 computer converter and 

the program simulating the channel vocoder and the pitch detection are 

implemented on an A.P. 120 B connected to the PDP 11/34. The spectral data 

are then transferred to the M-225 mini-computer. 
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Another version of KEAL including the syntactic analyzer is available on the 

U.T.S. systems of the new computer mM 308 3/B of the computer center. It is 

written in C language. A Fortran version of this system has been tested on a 

set of randomly selected numbers composed of one to six digits spoken by three 

speakers. The results are shown in Fig. 14. Further testing will be necessary 

with this new version. 

m SERAC SYSTEM ARCHITECTURE 

m-l GENERAL ORGANIZATION, 

The SERAC system architecture uses the classical features of a rule 

production system. Rules that encode domain knowledge are stored in a data 

base, called Rule Memory, which is partitioned into sub-bases, each sub-base 

corresponding to a problem. 

Objects that represent facts or event hypotheses are stored in an Object 

Memory which is divided into sub-memories corresponding to the different classes 

of objects. 

Problem Memory contains interpretation problems whose solution will generate 

phonetic hypotheses such as segment boundaries detection, feature hypotheses, 

pseudo-syllable segmentation, vocalic nucleus detection and so on ... 

Remaining entities like functions, parameters and acoustic data are encoded 

respectively under the form of Lisp functions, Lisp special variables (parameters) 

and files. 

An inference Engine matches rules against problems and objects and decides 

which rules have to be triggered in a given circumstance. 

The dialog between the user and the system is managed by an Interactive 

Editor. Edition of partial or complete results and triggering traces are handled 

by a special module. 
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SENTENCE RECOGNITION RESULTS 

TASK NUMBERS 0, ... 1000 

RECOGNITION 
90% 75% 85% PERCENTAGE 

NUMBER OF 50 40 40 
SENTENCES 

SPEAKER A B C 

Figure 14 



www.manaraa.com

328 

Fig. 15 shows the general organization of the SERAC system. 

m-2 ACTNATION 

The "SERAC" phonetic recognition is decomposed into a sequence of step 

activations: initialization, labelling, segmentation and primary phonetic feature 

recognition. 

The principal phases of these step activations are summarized in Fig. 16. 

Each module communicates with each other by means of acoustic objects like 

samples syllables, phonetic events and so on . which are in the data 

base: these different steps are detailed in section VI. 

IV THE LANGUAGE FOR EXPRESSING KNOWLEDGE 

The expert's knowledge of acoustic-phonetic recognition consists of the 

following: 

1. knowledge of domain objects (acoustic signal, samples, syllables, phonemes, 

etc ... ). 

2. knowledge of the methods for phonetically transcribing the acoustic signal 

(algorithms, heuristics, etc ... ). 

The objects represent the hypotheses elaborated or facts established during 

the recognition process and define, at a given instant the state of advancement of 

this process. 

These objects are created or transformed through type 2 knowledge. 

They are explicitly represented in a memory called the object memory. 

Type 2 knowledge is coded in the form of: 

- production rules 

- Lisp functions evaluated in the rules 
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Figure 15 
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IV-I THE OBJECTS 

The objects are representatiTes or instances of structures in the form: 

« class > < atttribute I >... < attribute n » 

as for a sample, for example: 

(sample beginning end energy-vector ... ) 

A given sample will then be an object: 

(sample 11 22 (I 2 0 3 4: 0 2 3 2) ... ) 

Object structures are declared in a ille (See functional architecture of the 

system) according to the syntax: 

class = / attribute / + 

1V-2 THE FUNCTIONS 

N-2-1 PRIMITNE OPERATIONS OF THE LANGUAGE 

Certain operations stem more from general knowledge than from expertise in 

the domain; these are, for example, arithmetic operations (+, - x, :), logical 

operations (and, or, negation), arithmetic predicatives (>, <, =, <>, ~, S). 

The operations are the primitives of the language expression knowledge, used 

as their Lisp equivalent. 

N-2-2 EXTENSIONS OF PRIMITNES 

Some expert knowledge corresponds to a purely algorithmic and procedural 

basic know-how of the domain which can easily be expressed in the form of Lisp 

functions, such as the computation of energy in a frequency band [fl, fbI from 

the vector v of energies in a sample, 

This computation is made by the Lisp evaluation of: 

(energy in the band n fh v) 
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This use of functions permits access to value through computation rather 

than explicit storage, in the form of object attributes. 

The expertise itself is expressed in the form of production rules: 

condition ---- action 

Modular knowledge can be easily expressed with this type of representation. 

Its accumulation can constitute a veritable expertise. 

Moreover, the knowledge base, composed of the set of rules, evolves easily by 

removal or addition. 

Lastly, each elementary part of the knowledge appears by itself within a rule 

and is therefore not lost, as an instruction would be in the heart of a fortran 

program, for example. 

Rules are in the form: 

NAME 

EXPERT 

PROBLEM 

IF 

AND 

THEN 

sequence of characters used as mnemonic name for the rule in 

question 

expert 

problem 

context 

condition 

conclusion 

Such a rule expresses that, for a data base situation (object memory, list of 

problems) which can be described by < expert >, < problem >, < context > 

and < condition >, this data bsse can be updated in compliance with 

< conclusion > directives. 

N-3-2-1 THE EXPERT 

The knowledge base can be divided up into sub-bases made up of rules 

having the same expert name. 
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Each sub-base must both be able to be activated in pa.rallel with the other 

sub-bases and to dialogue with them through the object memory. 

Examples of sub-bases (or experts): 

- beginning-and-end-of-speech-detector 

- pseudo-syllable-detector. 

IV-3-2-2 THE PROBLEM 

Each expert possesses a list of current problems. 

Each of these problems can be procesed by one of the expert's subsets of 

rules. 

At a given instant only those rules for which the problem is one of the 

expert's current problems can be activated. 

Example of problems for the "pseudosyllable-detector" expert: 

- detection-of-the-beginning-of-a-pseudosyllable. 

- detection-of-the-pseudosylla bIe-maximum. 

- detection-of-the-end-of-the-pseudosyllable. 

IV-3-2-3 THE CONTEXT 

The context part tests the presence in the data base of objects described by 

patterns. 

A data base situation can be described by the context part if: 

for each of the patterns, there exists an object in the data base which 

can be described by it. 

for each of the negative patterns, there is no object existing in the data 

base which can be described by it. 



www.manaraa.com

334 

In these cues, the variables contained in the context part are related to the 

values of the objects or attributes which they describe. 

IV-3-2-4 THE CONDITION PART 

When the presence of certain objects in the data base hu been tested by 

the context part, all of the pattern variables are bound. 

The condition part, a logical conjunction of conditions, verifies then certain 

relationships between these variables., 

If, for example, the variables 1a and ?b are respectively bound to 10 and 20, 

the condition part: 

(> ?b 1a) 

is verified and the rule is applicable. 

IV-3-2-5 THE CONCLUSION PART OR DmECTIVES 

When a rule is triggered, it carries out a certain number of actions 

(modifications in the object memory, list of problems, edition of results, etc ... ). 

These are expressed in the form of directives using the instanciations of variables 

realized in the context part : The main directives are : ADD, REMOVE, 

MODIFY objects; DO procedures; PRINT patterns; STOP; ADD, NEW or 

REMOVE Problems. 

There is another very useful directive which allows to search for one or more 

objects within the data base by "pattern matching". This directive is the 

directive "FIND". It is possible for instance to find all the samples with the 

attribute "Fricative true" within the data bue. 
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V THE RULE ACTIVATION 

The rule interpreter is that part of the system which decides upon and 

carries out the activation of certain rules. 

V-I THE BASIC CYCLE 

The basic cycle discussed in this paragraph is specific to a given expert and 

does not take into account the simultaneous activation of the different experts. 

1. As long as there remains an applicable rule R 

2. Stop 

1.1 search for the set of applicable rules 

1.2 choose one of these rules (conflict resolution) 

1.3 trigger the chosen rule (modifications in the object memory, in the 

list of problems). 

V-2 APPLICABLE RULES 

A rule is applicable if the problem that it deals with belongs to the current 

list of problems of the expert concerned and if the facts memory can be 

described by its context and conclusion parts. 

V-3 CONFLICT RESOLUTION 

When several rules are applicable during a given cycle of the rule interpreter, 

one of them must be selected for activation: this is the conflict resolution 

procedure. 

This choice may be arbitrary or it may depend upon meta-knowledge. 

The current version of SERAC (the first rule found) uses an arbitrary 

conflict resolution. 
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VI IMPLEMENTATION OF PHONETIC AND PROSODIC ANALYSIS 

IN SERAC 

In the current version of SERAC two main experts corresponding to the first 

part of phonetic and prosodic knowledge have been implemented. 

Current state of the phonetic analysis expert which ineludes more than three 

hundred rules is shown on Figure 17. 

The phonetic recognition proceeds sequentially by step: 

1. Reading each speetral sample and computing its attributes: spectral center 

of gravity, spectral standard deviation, low and high frequencies energies, 

derivatives, etc ... 

2. Detecting the sentence onset. 

3. Setting the eentisecond sample attributes: vowel, front, back, open, closed, 

eonsonant, nasal, fricative, silence. 

4. Grouping of samples into pseudo-syUables. 

o. Locating vocalic nuclei, detecting syllabic boundaries and computing their 

attributes. 

6. Detecting the boundaries of stationary and transient events between the 

vocalic nuclei. 

7. Computing the rudimentary phonetic attributes of these events: silence part, 

burst zone, fricative zone, nasal part, buzz-bar location, voicing segment ... 

These different steps are iterated each time it is possible until the sentence 

offset is detected and until the directive stop is given by one of the rules. 

The implementation of the rules for discriminating between vowel attack and 

plosive burst, for recognizing the place of articulation of plosives and nasals and 

for refining the vowel identifiction is under way. 

About fifty prosodic rules for detecting within a sentence the maxima and 

the minima of the vocalic durations, the peaks and the valleys of Fo, for ranking 

these attributes by decreasing order and for detecting the type of the sentence 
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and its main boundary has been written in SERAC with the results given in 

Section 11.5. 

An example showing how the phonetic knowledge is represented in a rule is 

given in Figure 18. 

vn FUNCTIONING OF SERAC 

SERAC is written in NIL on a VAX 11-780 running VMS. An interactive 

editor allows us to add, create, modify rules, objects and parameters: During the 

running session it is also possible to have partial or complete traces of the 

instanciations of the rules and objects, to stop the execution, to save the data 

base memory, to modify rules or objects and to start again. Backtracking is also 

possiblej Le., it is possible to start one, two or n cycles before we stop. All 

these facilities are obtained through a "menu" organized like a tree. 

The SERAC language is also compilablej each file can be compiled 

simultaneously or separately. This compilation makes an execution of the 

program much faster. For instance, the "SERAC" phonetic recognition as 

described in Fig. 17 takes about l' CPU time for analyzing a sentence composed 

of about 12 syllables. Digitalization and channel vocoder simulationa are done 

before and off-line on the PDP 11/34 and AP /120B processor. Current 

percentage of correct segmentation and primary phonetic feature recognition is 

similar to that obtained with the KEAL system. 

CONCLUSION 

Work is going on for including into SERAC the remaining rules which 

already exist in KEAL, for improving them and adding new ones possibly 

elaborated by other human experts. Then this new phonetic and prosodic 

knowledge base will be evaluated on a practical task. 
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·SERAC" PHONETIC RECOGNITION 

INITIALIZA TlON 

LABELING 

SEGMENTATION 

PROSODY 

Figure 17 
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(DEFRULE RI-NASALITY 
SAMPLE 
LABELLING 

IF 
(SAMPLE TECH (ENERGIES TEN) 

(ENERGY-LOW-FREQUENCY WEB) 
(CENTER-OF-GRA VITY TCDG) 

AND 
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(> (- fEB (MAX-ENERGY 450 1800 !EN) ) 1) 

name of the rule 
name of the module 
current problem 

CONTEXT PART OF THE 
RULE 

If there exists a sample 
represented by the variable Tech, 
with spectral energies represented 
by the vector Yen, with the low 
frequency energy (250-450 Hz) 
represented by TEB and with a 
spectral center of gravity 
represented by TCDG 

CONDITIONS: 
1. The difference between the 
energy in the frequency range 
250-450 Hz and the energy in the 
frequency range 450-1600 Hz must 
be higher than 1 (that is higher 
than 4 dB because the unit step of 
coding the energies is 4 dB) 

(~ (- fEB (ENERGY 850 850 T EN» 3) 2. E250-450HZ-E650-850HZ ~ 3x4db 

(~ (- TEB (MAX-ENERGY 1800 4200 TEN» 2) 3. E250-450HZ-MAX(EI601l-420O> ~ 2x4db 

(~ (+ (- (ENERGY 450 650 TEN) 4. E450-650HZ·E650-850 ~ 4db 

(ENERGY 650 850 TEN) ) 1) 0) 
(OR 

(~ (- fEB (ENERGY 850 1050 TEN» 2) 

(2: (- fEB (ENERGY 1050 1300 TEN» 2))) 

Then 
(MODIFY (SAMPLE TECH 

(NAS.ALl TRUE))) 

(NEWPB (LABELLING-CONTINUE))) 

5. one of the 2 following 
conditions must be satisfied: 

E250-450·ES50-I050 2: Sdb 
OR 

E250-450HZ-EI050-1300 ~ Sdb 

Conclusion part 
The attribute NASAL 1 of the 
sample TECH becomes "TRUE" 

The new problem to be considered 
is LABELLING·CONTINUE 

Fig. IS An example of rule detection "nasality" 
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The SERAC system itself will be improved: 

A meta language will be included in order to make easier for an user to 

express the global strategy of phonetic recognition. 

The actual version does not take into account the parallel organization of 

speech recognition algorithms; this point will be integrated in the next 

version in order to speed up the recognition process and to distribute the 

knowledge over separated modules called experts. Cooperation between the 

different experts will be studied. A new implementation of 8ERAC into the 

special processor 8M 90 is under way making possible to study this 

parallelism and cooperative aspects within an expert society. 
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MOTIVATION FOR BUILDING A SPEECH ANALYSER 

This paper is concerned with an experimental system of value to anyone 

interested in speech research in general, and in particular to those interested in 

speech input and output by computer. At the IBM UKSC we are building a 

system capable of converting text data to natural sounding speech. This 

embodies many of the features of an expert system since the system must 

understand and use the same rules of spelling, syntax, intonation, pronunciation 

and phonetics that a human speaker draws upon when talking. In building this 

system we must have a detailed understanding of normal human speech and a 

means of analysing synthetic speech to enable us to quantify the factors that 

determine intelligibility and acceptability. To achieve this we need a knowledge 

of both the physics and anatomy of speech production in the human articulatory 

system, and of the speech signal itself. We will need techniques for analysing 

synthetic speech and comparing it with its natural counterpart. An 

understanding of the process of speech perception, and of which parts of the 

speech signal carry the important perceptual information, is also relevant. A 

suitable system for the analysis of speech signals is thus an essential tool in this 

project and it is the development of such a speech analyser that is the subject 

of this paper. 
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INTRODUCTION 

SAY is an IBM Personal Computer (PC) based speech analysis tool intended for 

a diverse set of users engaged in the evaluation of natural and synthetic speech. 

The challenges involved in developing such a system include 

the recording, storage and manipulation of unlimited lengths of speech, 

provision of a flexible, easily understood interface for a very diverse set of 

users (eg linguists, phoneticians, speech therapists, engineers). 

provision of a high level of signal processing function (eg spectral and 

Linear Prediction Coefficient (LPC) analysis), 

provision of a simple method of extending the system function to fulfill a 

particular user's requirements. 

The SAY system consists of a 640 Kbyte IBM PC-XT with 20 Mbyte hard disk, IBM 

370 host connection together with special purpose digitisation and display 

hardware. Speech may be recorded and replayed from the hard disk at 

sampling rates up to 20 KHz. A vector display capable of showing two 

waveforms of up to 1024 points each is provided, together with waveform 

scrolling and editing facilities. There are two possible ways of editing the 

waveform: 

1. The user may select, copy, delete or modifY'portions of the speech waveform 

- using a special control panel while viewing the results of this editing on the 

display and also listening to the results as required; or 

2. System macros may be invoked to perform more complex operations on the 

selected portions of the waveform (eg cepstral analysis). 

In the editing mode the user is provided with a special-purpose control panel 

containing keys allocated to the most common editing functions. These permit 

the user to display or replay portions of the edited or unedited wave and to scroll 

these waves across the display, selecting and manipulating portions by the use 

of a joystick and on-screen cursors. The system may either be menu or 

command driven according to the expertise of the user. The menu system 

provides a flexible interface for feedback of information to enhance ease of use. 
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SAY provides a wide range of sophisticated signal processing facilites via a host 

link to the IBM UKSC lAX signal processing package (refs 2,3). These facilities 

include spectral and cepstral analysis, grey scale and colour spectrogram 

display, LPC analysis and pitch contour extraction. As the system is developed 

some of the signal processing facilites will move from the host into the PC. This 

will be achieved by the use of specialist signal processing hardware including 
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a Discrete Fourier Transform (OFT) unit based on a prime radix transform and 

the attachment of a raster colour display. 

SAY - SPEECH ANALYSER FUNCTIONAL DESCRIPTION 

SAY provides the following facilities: 

Digitisation 

Editing 

Analysis 

Storage 

Replay 

of speech signals. Since all its facilities, except for the actual speech acquisition 

and replay, can be applied to anyone-dimensional digital signal, the system 

could usefully be applied to a range of non-speech applications eg seismic 

processing, time domain reflectometry, vibrational analysis. 

It is intended that the system will have a wide range of users extending from 

computer specialists to linguists and phoneticians. Consequently it has a user 

interface that balances the flexibility needed by the computer professional with 

the ease of access appropriate to a linguist or other person with less 

computational experience. 

This was achieved by adopting a largely menu driven system and by the 

provision of a special keypad containing dedicated controls for cursor functions, 

waveform scrolling and speech editing and playback. The more experienced 

user may overide the menu system and use a single or full screen command 

mode while still retaining the dedicated control panel key functions where 

required. Many of the more sophisticated facilities are built up from basic 

operations using this command interface (and interactions with the menu system 

where necessary). These facilities are provided by a library of system functions. 

Examples are: 

Cepstrum processing to extract the vocal tract response 

Linear prediction to obtain vocal tract response 

Spectrum generation 

Pitch contour extraction 
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In implementing these functions extensive use has been made of the host 

resident signal processing functions provided by lAX. To this end a modified 

form of the PC Personal Editor has been produced. This can be invoked from 

SAY. It acts both as a command editor and an interface to the external command 

processors such as the PC DOS, the CMS environment in the host, and the 

interpretive lAX command processor within CMS in the host. 

A block diagram of the system is shown in Figure 1and the main functional units 

are: 

Analog audio recording equipment 

Speech digitiser and playback 

Waveform display and editor 

Speech and waveform analysis system 

Spectrum display 

Speech synthesisers 

The PC-XT controls all digitisation, editing, wave storage and playback 

functions. It is also used for the entry of all system commands and for the 

display of guidance information and alphanumeric feedback. It is connected to 

an IBM 370 host computer via a highspeed link. It is intended to enhance the 

function of the PC-XT with a specialist digital signal processing hardware to 

make a stand-alone system in the near future. 

Conversational monitor 

This is the PC monochrome display. It is used to display system menus and 

status information, such as the number of waves being edited, time of day. A 

typical menu is shown in Figure 2. Here the dual display mode is being used 

on the waveform to display two different sections of the same waveform. The top 

waveform shows an expanded region (along the time axis) of the waveform 

while the bottom regions shows a compressed region. The user is provided with 

information on the position of the cursors within the wave, the relative position 

of the cursor on the display and the position of the display window relative to the 

start of the wave. The overall duration of the wave in seconds, the original 

sampling rate and the total number of samples in the wave are also shown, 

together with an indication of the amount of horizontal and vertical scaling 

currently being applied to the display window. The user should be able to read 

all the facts he needs to know about the wave directly from the screen thus 

removing the need for tiresome mental arithmetic, say for instance in calculating 

the wave duration from the sample rate and total number of samples. 
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Speech Editing/Replay 26 Jun 1984 03-53pa 

Humber ot waves being edited • 
LEFT RIGHT 

edge cursor cursor edge 

Wave nalle POLITELY Display 0 60 183 255 

Sal'lple rate 10 Khz Wave. • 9049 9109 9221 9304 

Duration. 2.50 sec 25037 saJllples Scaling Horizontal • 4 Vertical 1 

Wave name POLITELY Display 0 2047 

Sample rate 10 Khz Wave. 15033 17079 

Duration. 2.50 sec 25037 samples Scaling Horizontal -2 Vertical • 1 

The information above shows.-

1. How many waves are being edited. 
2. The name of the wave being edited. 
3. The sample number of the right and left displayed samples. 
4. The location of each cursor on the wave display and in the wave. 
5. The scaling currently active. 

Hore ••• 

Fl HELP F3 EXIT F4 WAVE F6 DROP F7 PLAY F8 COMMAND F9 STORE FlO EXEC SAY 

Figure 2. Conversational monitor menu showing HELP facility. 

At the bottom of all the system menus is a prompt line which indicates which of 

the PC keyboard programmable function keys are active at that time and what 

their effect is. 

In the example menu it has been assumed that the user has pressed PF1 to 

obtain the HELP information for that menu. This displays information on the 
various options available within that menu. This is carefully positioned on the 

conversational monitor screen so that it does not obscure the primary menu 

fields. 

Speech Digitisation 

The speech sources are: 

Microphone 

Pre-recorded tape 

Output from a synthesiser 
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Digitisation sampling rate and filter can be selected under the control of 

commands issued from the PC keyboard. At present digitisation is performed 

by a Tecmar Labmaster attached to the PC. The input signal is low pass filtered 

by an analog antialiasing filter with an appropriate cut-off to allow 10kHz and 

20kHz sampling. A new digitisation system that uses fast dual port memory to 

buffer the ADC into the PC memory space is currently being developed. This 

will allow digitisation concurrent with hard disk activity and will permit records 

of virtually unlimited lengths of speech at sampling rates of up to 40 kHz. Lower 

sampling rates are obtained by digital low pass filtering and downsampling to 

the required sample rate. In this way linear phase may be preserved in the 

overall system response. 

The RECORD menu displayed on the conversational monitor is shown in 

Figure 3. All fields are initially filled in with defaults. The user may overtype 

these with new values if required. A simple recording level meter also appears 

Speech Recording 26 Jun 1984 03-S3p~ 

Selected function:-
Recording 
Editing and Replay 
ComMand Processing 
Synthesis 

External sample rate. 10 kHz 
Antialiasing filter. 5 kHz 
Internal sa~ple rate. 10 kHz 
Recording source. .• • 

If incorrect change and press ENTER 
or press M4 to RECORD 

min ADC level 

Fl HELP f3 EXIT 

Figure 3. Record menu 

110,20 kHz 
I~ - microphone 
It - reel-to-reel recorder 
Ic - cassette recorder 

.ax 
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on this menu so that the user may set the input level at an appropriate position 

to utilise the full ADC range. 

Playback is through an appropriate reconstruction filter selected by the system 

according to the original sample rate. A dual port memory buffer (similar to that 

needed for digitisation) will be implemented to accomodate speech output direct 

from the hard disk. 

The PLAYBACK menu displayed on the conversational monitor during replay of 

speech is shown in Figure 4. 

Waveform Display 

This is a high resolution X-Y directed-beam vector display capable of displaying 

one or two 1024 point windows on a speech waveform. The window may be 

scrolled along the waveform by the operation of a joystick on the control panel. 

The display has four levels of brightness (off, low, medium and high) and points 

may be made to blink as well. These brightness attributes are useful for 

delineating sections of the waveform that are being processed (eg deleted or 

copied). 

Vertical zoom and horizontal zoom and compression are implemented using 

scaling factors of 2,4,8,16 and 32. It is very convenient being able to display two 

waveforms simultaneously at different resolutions, since this permits the user to 

have a global view of the speech waveform as well as a high resolution view of 
the particular area he is working with. A typical example of this is shown in 

Figure 5. 

A pair of cursors are associated with each wave being edited. These may be 

manipulated from the control panel or by program control. They are used to 

mark sections of a wave for editing or replay purposes. 

Help facilities 

Help is provided for each function and facility in the system. It is displayed in 

either the lower or upper part of the conversation monitor screen as is most 

appropriate for the menu currently being displayed, and can be read whilst the 

user is completing the appropriate fields, or using the control panel. In general 
HELP is additive to what is currently displayed, and never overwrites a response 

field. 
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3279 Display 

This is a colour output-only device and is used primarily as a 'soft' graph plotter. 

It is attached to lAX via the Grapical Data Display Manager (ref 4). Its primary 

purpose is to provide a rapid means of viewing, in graphical form, the results of 

various signal processing calculations eg to show a waveform and its 

corresponding pitch profile. 

Graph Plotter 

This is an A3 size eight-pen IBM Instruments XY-750 digital plotter. Its support 

software runs on the PC-XT. It provides a hard copy facilities as a counterpart 

to the 3279. 

Speech Editing/Replay 26 Jun 1984 03-53pn 
Number of waves being edited: 1 

edge cursor cursor edge 
Wave name. POLITELY Display I 0 255 
Sample rate 10 Khz 
Duration. 2.50 sec 25037 samples 

Wave.. 9049 9304 
Scaling I Horizontal: 4 Vertical: 1 

Wave name POLITELY 
Sample rate 10 Khz 

Display I o 546 
Wave. •• 15033 15579 

1845 2047 
16877 17079 

Duration. 2.50 sec 25037 sanples Scaling Horizontal: -2 Vertical: 1 

Replay mode. : s 
Pause .. I 0.5 secs 
Recorder •• • 1 

(S,s Single / R,r Repeated 

(t reel to reel recorder 
(c cassette recorder 
(1 loudspeaker 

Fl HELP F3 EXIT F4 WAVE F6 DROP F8 COMMAND F9 STORE 

Figure 4. Playback prompts on lhe conversalional monilor: Replay of speech normally occurs 
when editing that speech. 

Control Panel 

The control panel provides a means of scrolling waveforms and of moving 

cursors. It also provides single key access to the commonest system functions. 

This means that the majority of editing activity can be performed under the 
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control of one hand (usually the left) which leaves the other hand free for taking 

notes, adjusting tape recorder controls. It consists of 16 keys, a one dimensional 

joystick, two tracker wheels with rotary encoders and two sets of thumbwheel 

switches. The joystick is used for scrolling the active displayed waveform, the 

rate of scroll being proportional to the amount of joystick displacement. The 

tracker wheels are used to move the cursors on the waveform display. Two 3 

digit thumbwheel switches are provided and these are used for specifying 

scaling factors for the region of the wave within and outside the area marked by 

the cursor. The function of each control panel switch is detailed below. The 

active action key mode is indicated on the control panel. 

Figure 5. Waveform display: The top waveform shows the schwa at the end of 'better' in the 
digitised waveform of the utterance 'He had better speak politely'. The bottom waveform 

is an expanded view of the start of 'politely' showing the strong low frequency transient 

at the onset of the heavily aspirated 'p'. 
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M1 toggle to alternative function for A 1-A8 

M2 move to next wave in edit ring 

M3 toggle between top and bottom displays 

M4 select extended cursor mode 

record start/stop 

P1 playback unedited active wave 

P2 playback wave between cursors 

P3 playback wave outside cursors 

P4 playback displayed wave 

A1 display edited wave 

select region between cursors 

A2 display only selected regions within wave 

copy region between cursors 

A3 display all but selected regions within wave 

mark point at left cursor 

A4 toggle between dual and single wave display 

delete region between cursors 

AS increase wave vertical scaling 

reset cursor positions 

A6 decrease wave vertical scaling 

reset selections 

A7 increase wave horizontal scaling 

reset marked points 

AS decrease wave horizontal scaling 

select extended cursor mode 

Figure 6. Control Panel Functions 
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WI W2 

Pala rest 

J Joystick 
TWI - TW2 Thumbwheels 
HI - H4 Hode setting keys 
PI - P4 Playback keys 
Al - AS Action keys 
WI - W2 Tracker wheels 

Figure 7. Control Panel 
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Speech Editing 

A full range of waveform editing functions are provided. Up to six waves may 

be involved in the editing process at anyone time. Sections may be copied and 

deleted from each of these waves freely. 

The waveform editing facilities include: 

Delete a wave section 

Copy a section of a wave from one wave to another or within the wave 

Move sections of a wave within the wave 

Store wave on hard disk 

Select a segment of a wave for subsequent processing e.g. 

• Compute the Fourier transform of the segment 

• Play back only the selected segments 

• Play back ignoring the selected segments 

• Mark points in the wave for reference in subsequent processing 

Spectrogram Computation and Display 

Speech spectrograms can be computed using lAX and then displayed on a raster 

graphics display or on the 3279 colour terminal at present. It is intended to 

provide this facility eventually within the PC environment by the use of dedicated 

Fourier transform hardware. 

Signal Processing 

An extensive range of signal processing functions are available within lAX (refs 

2,3) at the host. The user can invoke these functions directly from the speech 

analyser. In the first version the results may be displayed on the 3279, or on the 

wave and spectrogram displays. The command interface is via a modified form 

of the IBM PC Personal Editor. It provides both a command editor and a means 

of executing a single command or command list. Eventually it is intended to 

move the signal processing function provided by lAX into the PC environment 

by installing specialist digital signal processing hardware. 
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1* Routine to compute the spectrogram of a speech ~aveform *1 
1* Parameters 1st name of file containing speech waveform 

2nd width of FFT window 
3rd amount by which FFT window is stepped along waveform 

for each spectrum time slot 
4th file name to receive calculated spectrum *1 

1* first get parameters from command line *1 

"IAXLSTR"; IF RC~=O THEN EXIT RC; PULL name 
"IAXlSTR"; IF RC~=O THEN EXIT RC; PULL width 
"IAXlSTR"; IF RC~=O THEN EXIT RC; PUll ' step_size , 

"IAXlSTR"; IF RC~=O THEN EXIT RCI PUll spectrumj He 

1* compute Hamming ~indow for selected FFT size *1 
'hamming=hammC'width' )' 

size -

1* pad out the Hamming window with Os to make overall window 512 points *1 
'pad= 0.( 'width' :5111' 
1* reserve array space for resultant sonogram *1 
'r=O. (0:255 , O:xs(' name' II" step_size '_size'-II' 

1* main loop *1 
1* select the current portion of the speech waveform *1 
1* apply the Hamming window and take the FFT of the result *1 
1* take the log of the absolute magnitude and ;'"It in the result array *1 
1* repeat the loop, moving the FFT window slo~ly along the speech waveform *1 

'do i=O by I step_size I to XS(I name' )_1 step_size '-1' 
'b=' name' (i:i+' width' -11*hamming II pad' 
'c=ft(bl' 
'r(",i/' step_size 'J= log abs c(0:255I' 
lend' 

1* orientate songoram + make max energy correspond to black rather than white *1 
'r=-r' 
'r= cl range( r I' 
Ir=tr mir r I 

1* put final sonogram in destination file *1 
'put r, , spectrum_file " IAXl,keep,repl' 

Figure 9. Command list for the calculation of a spectrum 



www.manaraa.com

357 

Figure 10. Cepstral calculation ollhe vowel a: in 'hard' 
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Figure 11. Analysis of phoneme synthesiser spectrum: The synthetic waveform is shown at the 

top. Bottom left is the spectrum of a portion of the dipthong in the second syllable of 

'controls' while bottom left is a half tone spectrum of the entire word. 



www.manaraa.com

359 

EXAMPLES FROM A SAY SESSION 

SAY offers a wide range of signal processing functions. Here we will illustrate 

some of the simpler and more commonly used features. The spectrogram for the 

utterance 'Good morning how are you' is shown in Figure 8. This spectrogram 

was taken from the high resolution spectrogram display system within SAY and 

was computed using the hopping FFT technique shown in the SAY command list 

of Figure 9. The command list shows the simple, readable, high level form of 

the lAX language. 

Figure 10 shows the type of graphical output that may be obtained from the 3279 

soft graph plotter. Here the two formant peaks in the cepstrum of the vowel a: 

in hard can be clearly seen. (Note that this display would normally be in several 

contrasting colours but due to printing restraints a black and white image is 

shown here). By using a grey scale half-toning technique the 3279 can display 

spectrograms, albeit at rather lower resolution than the dedicated spectrogram 

display. This is useful when speech processing is being carried out under lAX 

but outside the normal SAY environment. An example is shown in Figure 11. 

This is a piece of synthetic speech - the word 'controls' generated by a simple 

phoneme synthesiser. It can be seen that the lower formants in the synthesiser 

output are approximately correct but the higher formant information is rather 

less well defined. 

CONCLUSIONS 

We have developed a multi-function speech analysis system, based on an IBM 

PC-XT, which is capable of a wide range of speech processing functions. The 

system function is being expanded to include local spectrographic calculation 

and processing of unlimited lengths of speech. The system is currently being 

used to evaluate human and synthetic speech in relation to our text to speech 

work. 
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Figure 8. Narrowband spectrum of 'Good morning how are you' 

criticism. We are especially grateful to Dr Paul Jackson for the help he has given 

us with the lAX package and to Nick Allen and Dilbagh Singh for the significant 

contribution they made in implementing the SAY code. 

References 

1. Tomorrow's Computers, IEEE Spectrum, vol 20 no 17, Nov 1983. 

2. The lAX Image Processing Language. P H Jackson, UK Science Centre 

Report no 113, Feb 1983. 

3. The lAX Image Processing Language - Functions and Commands. P H 

Jackson, UK Science Centre Report no 114, May 1983. 

4. The GDDM General Information Manual. GC33-0100. 



www.manaraa.com

AUTOMATIC GENERATION OF LINGUISTIC, PHONETIC 

AND ACOUSTIC KNOWLEDGE FOR A DIPHONE-BASED 

CONTINUOUS SPEECH RECOGNITION SYSTEM 

Anna Maria Colla 

Donatella Sciarra 

Central Research Department 

Elettronica San Giorgio, ELSAG S.p.A. 

Via G. Puccini, 2 

16151 Genova Sestri 

ITALY 

ABSTRACT 

An important Issue In template-matching continuous-speech recognition 

systems is the right choice of the language model, together with an appropriate 

definition of the basic units to be recognized. The advantages of using a 

hierarchical transition network model with diphones and diphone-like elements as 

basic units are illustrated in the paper. However, a severe drawback in the use 

of sub-word units is an increased complexity in producing and managing the 

overall knowledge relating to language representation and template definition and 

extraction. An efficient solution to this problem is required especially when the 

recognition system is to be used by unskilled users in actual applications. For 

this purpose we have developed an automatic procedure for generating the 

linguistic, phonetic and acoustic data bases expressing the whole information 

required by the diphone-based system. 
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1. INTRODUCTION 

An important issue in template-matching continuous-speech recognition (CSR) 

systems is the choice of the basic units to be recognized. Economy and 

invariance with the surrounding units are the main requisites to be evaluated. 

We found that the diphones, as defined in the following, completely fulfil these 

requirements. In fact fewer than 400 diphones are sufficient to describe the 

whole Italian lexicon; moreover their fairly high insensibility to the context ensures 

that very few templates can adequately represent each unit. In this way the 

speaker-dependent template dictionaries are quite manageable even for complex 

applications. In fact such dictionaries need not comprise all the Italian diphones, 

but are tailored to a particular language: they only comprise the diphones 

appearing in the words of the lexicon, plus some elements that may be present at 

the junction between two fluently spoken words. 

We have implemented two diphone-based CSR systems, obtaining satisfactory 

performances. One of them is described in [14]; the other one, which is referred 

to in this paper, has a real-time oriented, very simple architecture, consisting of 

two modules: an acoustic front-end and a linguistic decoder. The key point in 

this system is the choice of a good model of the spoken language: a hierarchical 

transition network (HTN), where the basic speech units are diphones [16]. The 

HTN language representation smoothly integrates the different knowledge sources 

involved: syntax and semantics describe the permitted sequences of words, while 

phonetic and phonological knowledge is used for generating the diphone 

subnetworks corresponding to words and for dealing with junctions. Acoustic 

knowledge is finally present in the sequences of spectra that make up the basic 

units and in the sound similarity measure. 

With such a language representation, the recognition problem, formulated as 

that of finding the acceptable sequence of basic units that best fits the input 

signal [4], is turned into the search for the path through the network that 

obtains the maximum cumulative similarity score [16]. This task is accomplished 

by the linguistic decoder. 
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Such a diphone-based system led to high recognition performances [16] and 

proved to be more suitable for the treatment of complex languages than 

whole-word template matching systems; this is due particularly to the good 

discrimination between similar words, the small storage requirements and the fast 

training on new speakers. On the other hand, a drawback common to all 

systems that apply sub-word units is an increased complexity in producing the 

overall knowledge relating to language representation and template definition and 

extraction. With an HTN representation all the knowledge relating to an 

application must be conveyed into the linguistic, phonetic and acoustic data bases, 

corresponding to the high level networks, the diphone subnetworks and the 

template set, respectively (see Fig. 1). Both the building of the networks and the 

creating of the template set, which requires the identification, acquisition and 

extraction of the necessary units, are long and difficult tasks when complex 

languages are involved. It is hardly worth saying that manual network generation 

and template extraction are completely inadequate for practical applications. This 

spurred us to develop a completely automatic procedure (sketched in Fig. 1) that 

derives all the data bases relating to any language associated with a regular 

grammar, starting from the vocabulary and a Backus-Naur form (BNF) 

representation of the grammar. Besides building the high level and diphone 

networks, the procedure solves the problems of drawing up the inventory of the 

necessary diphones and correctly creating a set of templates, tasks which are not 

as straightforward as when dealing with whole words. The procedure derives a 

set of sentences containing occurrences of all the needed prototypes, which, 

uttered by any speaker, constitute the training material for that speaker from 

which the template extraction is finally accomplished by means of a diphone 

bootstrapping module. 

The knowledge generation procedure, which produces all the pieces of 

information relating to an application and actually trains the system on new 

speakers, is the main subject of this paper. The dip hones are defined, and their 

properties are illustrated in Section 2; the relevant phonological rules are described 

in Section 3. In Sections 4 and 5 the HTN language model and the linguistic 
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decoder are presented. The training phase of the system, consisting of the 

automatic generation of the training set and the extraction of the templates, is 

discussed in Section 6. Finally some experimental results obtained with data 

bases generated by means of our procedure are presented in Section 7. 

2. THE DIPHONES: DEFINITION AND PROPERTIES 

Diphone is a general name, used in order to avoid the proliferation of new 

terms, referring to three different types of units, whose common and major 

characteristic is the insensibility to coarticulation effects with the surrounding 

sounds. This means that a diphone keeps its identity regardless of the context in 

which it happens to be embedded; that is to say, a diphone is not influenced by 

adjacent diphones (although it may be influenced by prosodic factors such as the 

location within a word or the stress level). An important consequence of this 

feature is the economy of the diphone dictionaries, due to the very small number 

of templates required in order to represent each diphone adequately. In addition, 

the number of the diphones themselves is small (much smaller than that of 

syllables, for instance). 

The different types of diphones are related to the main parts of fluent 

speech: steady-state sounds and transitions. With regard to the latter, we have 

chosen to take into account only the very transitions, that is, very short portions 

of the signal. Thus, as will be shown in the following, the matching with 

transition templates does not require any time warping [10] capability, necessary 

with longer units (words, demisyllables, and so on), which may sometimes cause 

misrecognition because of the allowance to skip spectral states. The resulting 

definition of "diphone" [15] is somewhat different from the classical one of 

"interval between the centres of adjacent phonemes" [8, 12, 17J. Our diphone 

dictionaries are made up of units representing: 

1) stationary sounds corresponding to the steady-state part of some 

phonemes: vowels, silence and consonants other than plosives (we will 
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describe in Sect. 3 how plosives are dealt with); 

2) true diphones, that is, transitions between two adjacent phonemes, the second 

one being sonorant: consonant -+ vowel, consonant -+ consonant, vowel -+ 

vowel; at present we do not make use of the vowel -+ consonant transitions; 

3) triphones, that is, larger events embracing three phonemes, of which the 

central one is sonorant but not stationary (lrl or semivowel). 

The use of diphone-like units instead of the commonly used whole-word 

templates seems to be advisable in CSR systems. In fact the rather small size of 

the diphone template dictionaries ensures a smaller storage requirement and a 

lower computation time for the recognition system than those needed in 

whole-word template matching. Moreover, the time necessary to train the system 

on a new speaker is fairly low, since generally not all the words of the lexicon 

need to be comprised in the training set. Even for small vocabularies, such as 

the digits, the training set dimension for diphones is smaller than that required 

for whole words, if coarticulation effects are taken into account. When 

whole-word templates are used, different pronunciations or phonological variations 

of a word can only be taken into account by collecting many different templates. 

Here, one of the advantages in the use of diphones becomes clear: instead of 

adopting a unique description of each word, alternative and optional paths are 

allowed in the network, so that a highly accurate representation, endowed with 

greater flexibility and economy, is supplied. This kind of representation has a 

higher discriminative power on similar words as well, as no spurious differences in 

phonetically identical portions of such words may override true discriminative 

information. The diphones also provide a very natural way of dealing with 

junctions between adjacent fluently spoken words: these can be adequately 

represented by inserting optional transitional diphones such as diphthongs (see also 

[1]). As a final remark, we point out that the use of diphone-like units causes 

no penalty on recognition performance: actually, comparative tests have displayed 

better results with diphones than with whole words. 
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3. DIPHONE PHONOLOGY 

The description of any word of a language in terms of a sequence of 

sub-word units is a rather easy problem to solve for the Italian language with the 

diphone-like units defined in Section 2. 

The determination of the sequence(s) of diphones corresponding to any given 

word is accomplished in two steps: first a translation is performed from the 

orthographic form to a phonetic transcription; then the diphones relating to the 

sequence of phonemes are obtained. Table I shows the set of phonemes [11] 

pertaining to the Italian language. 

The orthography of Italian words is closely related to their pronunciation, so 

that the phonetic transcription is quite an easy task. Generally there is a 

one-to-one correspondence between the phonemes making up an uttered word and 

the alphabetic symbols making up the same written word. The very few 

exceptions are easily dealt with in an automatic way. 

The determination of the diphone sequences making up each word starts 

from the phonetic string corresponding to the word. It is based on rules likely 

to be applied not only to Italian, but also to any other syllable-timed language 

(such as Spanish or even German). 

With regard to the three above mentioned diphone types, we point out that 

steady-state sounds are vowels, fricatives, nasals and liquid consonants, as well as 

the portions of affricates after the beginning of frication. Plosives generally have 

no "stationary" parts (fkl may constitute an exception, as its burst may be 

long), whilst Irl and semivowels mayor may not have some. Plosives are simply 

rendered by means of a phonetic silence plus the transition to the following 

sonorant sound. Final plosives in names or foreign words (such as stop) are 

adequately represented by a transition to a "neutral" vowel lal. A phonetic 

silence may also appear before affricates. When a semivowel (f j/, Iw I following 

the notation of [11]) has a short steady-state portion, it is rendered by means of 

the corresponding vowel (fil, lui). In other cases a triphone is present. Only 
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NAME SYMB. TYPE EXAMPLE 

A Q. VOWEL P!ne 

E+ E. " seUe -
E- e. " cena 

I ;. " ~iso -
0+ :> " sto1"ia -
0- 0 " P!ZZc> 

u '\I. " CU1"a 

L t LIQ. loU. 

LA A " !!.1e 10 

R 
,... 

" l"afRO -
M WI NAS. ... no -
N 1\ " noUe -
NA l' ~omo 

F f FRIC. Fo11. 

S S " sano 

SA % " 1"osa 

SH f " scia -
V 'f' " "e 1" 0 -
C tI AFFR. ci_ -
J d.; " !ioCO 

Z ts " 1enzuo10 -
ZA J.z: " 2e1"0 

B .b PLOS. bosco -
D cl. " donna -
G '5 " 182._ 

K I< " CO""" -
P r " ~a,.te 

T t " teT"l"a -

TABLE I The Italian phonemes. 
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very few triphones actually exist when the central phoneme is / j/, because of the 

intrinsic length of the overall transition "consonant -+ /j/ -+ vowel". Altogether, 

fewer than 400 different diphones are sufficient to cover all Italian words. 

Each Italian syllable can be developed as a sequence of diphones by following 

the above mentioned rules. The development of each syllable contains: 

1) the stationary consonant(s) (if any) and/or 

2) the phonetic silence preceding plosives (if anY)j 

3) the CC transition (if any) and/or 

4) the CY transitionj 

5) the steady-state vowel(s)j 

6) the diphthong (if any). 

For instance the syllables "sei" , "ra" , "ta" , "spa" , "fie" and "tro" can be 

decomposed as: 

sei ra ta ~ fie tro 

1) IS IS IF,L 
2) Isil Isil Isil 

3) IFL ITR 

4) ISE IRA ITA IPA ILE IRO 

5) IE,I IA IA IA IE 10 
6) lEI 

In the following we present the complete diphone sequences corresponding to the 

expansion of words containing the syllables of the above example. The diphones 

in parentheses (which correspond to diphthongs or "stationary" portions of /k/ or 

affricates) may be skipped. The couples of diphones in curly brackets can be 

replaced by the corrresponding triphones (Le., "KUA", "TRO" and "ZIO"). 

serata 

sei 

-+ S - SE - E - RA - A - sil- TA - A 

-+ S - SE - E -(EI)- I 
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i.e.: 

quattro 

spazio 

i.e.: 

spazio 

flebile 
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-+ sil- (K)-{KU -UA}- A -sil-{TR -RO}- 0 

·1 (K)_KU -UA_A _ il_TR -RO ...... O 
-+ SI - - KUA - s - TRO -
-+ S -sil- PA - A -sil -(Z)-{ZI -IO}- 0 

-+ S -sil- PA - A -sil -(Z) _ZI -10 .... 0 
-ZIO -

-+ F -FL - L -LE - E -sil-BI - I - L -LE - E 

We have also developed length rules for the diphones, to be applied in the 

generation of the network representation of the language. 

4. LANGUAGE MODEL AND NETWORK. REPRESENTATION 

The adopted language model refers to a simple language type, the finite-state 

one, that can be associated with a non-recursive state transition network or 

finite-state automaton [61. 

We make use of a hierarchical transition network representation [71, in which 

all the knowledge is partitioned into several levels. The specific knowledge 

pertaining to each level is contained in one or more networks whose nodes are 

related to an appropriate kind of unit (that is words, diphones or spectra). In 

all the levels except the lowest one each node points to a network belonging to 

the adjacent lower level, which may be considered as the expansion of the node 

in terms of simpler units. This provides a link between adjacent levels. Fig. 2 

shows an example of a. portion of a simplified HTN representation of a mini 

command language, with only one node in each level fully expanded through a 

lower level subnetwork. The language of the application is represented in terms 

of words in one or more high-level networks, where the syntactic and linguistic 

knowledge defines the correct sequences of words. The highest level may simply 

correspond to a network of words, or it may be convenient to introduce a 

number of upper levels (as in the example), whose nodes represent syntactic 

groups, each one associated with a different network. For complex and large 
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AZIONE: 

met ti : 

t i: 

FIG. 2 : Hierarchical Transition Network representation of a mini command 
language. Only one node at each level is fully expanded through a 
subnetwork in the immediately lower level. 
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languages, in which the same groups appear in different positions, the latter 

representation is particularly useful because the repetition of their network 

representation is avoided. In this case the storage requirements generally decrease, 

while the computation effort required to manage this more complex structure 

grows. The initial and final states of the language correspond to the silence that 

precedes and follows any utterance; in adddition, an optional silence state may be 

included between any two consecutive words. 

At a lower level, each word is described in terms of a network, whose nodes 

correspond to diphones, and which is built according to the phonetic knowledge. 

All the information about the possible alternative sequences of units in the word 

and their duration is contained in this diphone-Ievel network. A node 

corresponding to a diphone can be described by means of a structure containing: 

-+ the diphone identifier 

-+ the position of the diphone in the word (initial, intermediate or final) 

-+ a steadiness flag 

-+ lower and upper duration bounds (only for stationary diphones). 

Each transitional diphone can be simply represented by a sequence of 

spectral states, with no need to duplicate or skip any of them. In fact it is well 

known that the very transition between two sounds has a basically fixed duration, 

mainly determined by the articulatory time constants [3J. A duration variability 

is however allowed for steady-state sounds. The duration bounds depend on the 

particular sound, on the position in the word and on the stress level. Their 

accurate determination is very important in avoiding the erroneous recognition of 

abnormally short or long phonetic events. This model of temporal variability 

offers a better time warping capability than the common whole-word template 

matching methods with 2:1 maximum duration ratio between templates and test 

words [10J. Indeed the time alignment between input signal and templates thus 

achieved avoids possible misrecognitions due to the insertion or deletion of spectral 

states in the transitions, whilst the steady-state sounds can be shrinked or 

stretched to a greater extent within reasonable limits. 
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Phonological rules are also applied at the diphone level, to deal with 

junctions between words. 

At the lowest level, III which the acoustic knowledge is present, a parametric 

representation of each diphone is given as the sequence of spectral states that 

make up its templates. Steady-state diphones are represented by one-spectral-state 

templates, while transitional diphones are represented each by one multi-frame 

template of appropriate length which exactly covers the transition. 

The HTN representation can be automatically derived for any language 

generated by a regular grammar [6]. A procedure has been developed for the 

generation of the word network(s) (expressing the linguistic knowledge of the 

system, as shown in Fig. 1) from a BNF representation of the grammar where 

the type of recursion allowed in regular grammars may be present. Either 

one-level or multi-level organizations can be chosen for this representation. The 

insertion of optional silence states between consecutive words and the elimination 

of redundant states are automatically performed. 

We have also developed a transcription procedure, which picks out the 

sequence(s) of diphones making up any Italian word simply from the orthographic 

form of the word itself. It is based on the rules presented in Section 3. Given 

a recognition task, with its lexicon and grammar, the procedure permits us to 

determine all the units needed for the representation of the vocabulary (including 

possible junctions between fluently spoken words). This in turns allows us both 

to derive the definition of the template dictionary (that is, how many and which 

units are needed, and how many and which templates for each unit) and to 

generate the diphone networks (expressing the phonetic knowledge of the system). 
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6. THE LINGUISTIC DECODER 

In our diphone-based CSR system the HTN language model adopted yields a 

tight integration between signal and symbol processing, resulting in a simple 

organization. The entire system consists of only two processes: the acoustic 

front-end, providing a parametric representation of the speech signal, and the 

linguistic decoder, producing the interpretation of the utterance as a correct 

sentence of the language. 

The speech signal, collected with a close-talking microphone, is low-pass 

filtered at 4.6 KHz and sampled at 10 KHz. Every 10 ms a 256-point Hamming 

window is applied to the signal and a parametric representation is derived. 

Different kinds of acoustic analysis are allowedj in the experiments being currently 

run we make use of 12 cepstrum coefficients derived by LPC analysis [13). 

The HTN representation of the language is the database where all the 

knowledge relating to the recognition task is present at different levels. The 

recognizer basically performs a dynamic-programming search to find the path 

through the HTN which attains the highest cumulativ~ similarity score with the 

input sentence. This path corresponds to a sequence of basic units, chosen from 

among all the acceptable ones that make up a sentence of the language. The 

multi-level organization requires the search to start from the highest level 

network, and to go downwards through the levels from a node to its expansion 

at the adjacent lower level, till the lowest level is reached. Here the similarity 

can be computed between input and template frames. Then the information is 

conveyed upwards through the levels to the highest one, and at each level a piece 

of knowledge is worked out, based on the information coming from the adjacent 

lower level. Any decision is deferred to the full-message level, where all the 

pieces of information, from acoustic-phonetic to lexical and syntactic, and possibly 

semantic, are available. Delaying decisions to the highest level reduces errors and, 

in addition, avoids the complications that arise in recovering from segmentation 

errors. 
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The recognizer makes use of a best-few search strategy without backtracking 

to update at each step the paths of the network being currently explored. The 

number of paths explored is kept small by a beam-search strategy similar to the 

one developed in the Harpy system [9]: those paths whose cumulative similarity 

score falls below the locally best one by more than a given threshold are pruned 

out. Preliminary tests were carried out to find the best pruning threshold, and 

the one which most restricted the number of paths retained without lowering the 

performance was chosen. 

At each time interval an input frame is processed; a similarity measure is 

only computed between this frame and one template frame of the diphones 

associated with the current paths. The cumulative similarity for these paths is 

updated, and the best-few strategy is then applied to cut off low-similarity paths. 

The similarity score between an input frame and a template frame can be 

interpreted as an evaluation of the possibility that the input frame belongs to the 

relevant phonetic event. It can be obtained by calculating a distance between 

the two patterns, and transforming it into a number ranging between 0 and 1 as 

a linear function between two predefined distance thresholds, whose values depend 

on the analysis adopted. The distance chosen when using LPC coefficients is the 

Euclidean one. 

The algorithm described is real-time oriented, as the decoding proceeds along 

with the similarity measurement. This means that a partial interpretation of 

early words in a sentence can be available when the input speech is still being 

processed, even before the speaker has finished talking. Indeed the decision on 

thc recognized diphones does not have to be delayed until the end of the 

sentencc; as soon as only one interpretation remains possible for a time interval, 

that is, only one path in the network is "alive" for it, the relative diphones and 

words are given, and a cleanup procedure eliminates dead paths, thus keeping the 

required memory storage to a minimum. Of course such a decoder cannot make 

use of pieces of information such as the length of the sentence; the decoder itself 

detects the end of the sentence when the last node in the best path corresponds 

to a final silence whose duration is longer than a predefined value. The 
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segmentation process performed by the recognizer can be represented in graphic 

form, as a waveform where the boundaries of each recognized diphone are 

marked. An example is shown in Fig. 3. 

The method appears to be robust, so that no particular care is required in 

the way the sentences are uttered. Moreover the simple algorithms and control 

strategy make a custom hardware implementation possible. An approximate 

evaluation of the computational power necessary for large vocabularies has 

revealed that it is well within the capability of present multiprocessor hardware. 

At present the linguistic decoder is implemented on a general-purpose 

mini-computer by means of Fortran routines. 

6. AUTOMATIC TRAINING 

When performing CSR with whole-word templates, the training set must 

comprise all the words of the lexicon in one or more occurrenceSj indeed, in order 

to correctly handle co articulation effects between adjacent words, a different 

template is required for each context situation. When using diphones, the 

training sentences are only expected to include one occurrence of each diphone. 

As the lexicon size increases, the whole-word template set becomes larger and 

larger, whereas a diphone template dictionary remains fairly small in size. In the 

latter' case both the amount of training material and the computational load are 

greatly reduced. On the other hand, the template extraction from the training 

sentences is undoubtedly more complex in the case of sub-word units, where a 

reliable segmentation is required to correctly isolate very small portions of the 

signal. 

Since a different dictionary is necessary for each speaker and each language, 

however, the problem of determining the set of diphones for a given application 

and extracting the templates for a test speaker becomes crucial. Moreover, 

making the training phase completely automatic not only avoids a lot of manual 

work, but is also necessary for practical applications, if the recognition system is 
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FIG. 3 : Output of the recognition of the utterance "Passa a destra in alto 
il muro" ("Jump the wall up right"). 
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actually to be used by persons with no skills in phonetics or linguistics. 

The training procedure necessarily consists of the following steps: 

1) determination of the necessary units from the lexicon of the language and, 

for each unit, of the possible different context situations, i.e., determination 

of the number and types of the required prototypes; 

2) generation of a suitable set of training sentences containing occurrences of all 

the prototypes needed; 

3) extraction of the templates from the training sentences uttered by the test 

speaker. 

We have developed a completely automatic method of performing these steps. 

It includes two modules: 

-+ generation of the training sentences (GTS). It performs steps 1 and 2; 

-+ diphone bootstrapping (DB). It performs step 3. 

The GTS and DB modules can be used separately. For a given application, 

it is necessary to perform the GTS procedure only once and the DB procedure 

every time templates by a new speaker are needed. 

GENERATION OF THE TRAINING SENTENCES 

The input to the GTS module (see Fig. 1) consists of the vocabulary of the 

language and of a BNF representation of the grammar of the application, which 

must be a regular grammar. The main task performed by the procedure is the 

creation of the set of training sentences which, uttered by the test speaker, will 

constitute the training set and supply the templates. The procedure also 

produces the new diphone dictionary scheme, and a file which provides the DB 

module with the information necessary, i.e., the context of the diphones in each 

word and the transitional diphones that may be present at the junction between 

two consecutive words. It should be noted that it is possible to create a training 

set containing only some of the diphones of the application. This is useful if a 

dictionary of templates for the test speaker is available but a different application 
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is required. This means that a number of templates already existing need not be 

extracted again; in this case it is convenient to enlarge the old dictionary by 

simply adding the missing units. 

The GTS procedure was developed in a modular way, so that different 

routines perform a part of the whole task. 

First a list of the necessary units IS derived from the vocabulary by 

generating diphone expansions for each word using the rules described in Section 

3. The procedure also finds out which stationary diphones appear in different 

prosodic situations and thus require multiple templates. At present multiple 

templates are only derived for sonorant sounds (vowels, liquids and nasals) if they 

appear in different positions in the words of the lexicon (initial/intermediate / 

final). For vowels the stress level is also considered. Altogether about 500 

templates can represent the whole Italian lexicon for an individual speaker. A 

list of the junction diphones is derived by examining all the possible couples of 

consecutive words in the language to find out when an optional transitional 

diphone can be present at their junction. The junctions between words generally 

correspond to diphthongs (as usually Italian words end with a vowel), but they 

may also be consonant-vowel or consonant-consonant transitions, as shown for 

instance in Fig. 3 ("NA", "LM"). 

Another routine generates the set of training sentences that are expected to 

include one occurrence of each diphone. If a diphone can appear in different 

prosodic situations, at least one occurrence corresponding to each of them will be 

present, and it will be possible to extract each junction diphone between 

consecutive words. It is not necessary for the training set language to be the 

same as that of the application. A different grammar can be used that includes 

all the words of the lexicon; shorter or fewer training sentences can be obtained 

with a more flexible, less constrained training grammar, including a greater 

number of permissible sequences of word. This can be done for instance by 

allowing the elimination of some portions of sentences. 
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The input to the procedure for generating the training sentences consists of 

the training grammar and of a table containing, for each necessary template, a 

list of all the words that contain it. The procedure repeatedly creates groups of 

words, parts of correct sentences of the language, each group corresponding to the 

expansion of a non-terminal symbol in the grammar. This process stops as soon 

as all the templates are present in one or other of the groups. To go into 

detail, at each step the set of templates that have not yet been included in any 

group is examined. Only the templates that appear in a minimal number of 

words of the lexicon are considered: for each of these templates one of the 

words containing it is selected, namely the one comprising the greatest number of 

unselected templates. The groups of words are then arranged into a set, which 

must contain all the selected words; each group includes two or if possible more 

selected words, plus others chosen in such a way as to minimize the length of 

the group, while extracting as many templates as possible from it. When all the 

templates are present in one or other of the groups a set of complete sentences 

including all the groups is generated by adding as few words as possible. 

DJPHONE BOOTSTRAPPING 

Having generated a set of sentences containing occurrences of all the units 

needed for a given task by means of the above described GTS procedure, we 

have a complete training set. The actual template extraction is accomplished for 

each speaker through the DB procedure described in [2J (another example of a 

bootstrapping technique for deriving sub-word units, namely Japanese syllables, can 

be found in [5]). 

The DB procedure, which is sketched in Fig. 4, consists of four steps, 

namely: 

1) the acquisition and analysis of the training set; 

2) a forced recognition of the training sentences, with hand-cut or automatically 

derived templates from a training speaker, by means of which the signal is 
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FIG. 4 The Diphone Bootstrapping procedure. 

segmented into diphonesj 

3) the template extractionj 

4) a refinement session, for a check on the bootstrapped templates and, if 

necessary, the addition of any missing templates. 

With regard to the acquisition (step 1), we must point out that the GTS 

procedure not only generates a complete training set (that is, all the templates 

needed can be extracted from it), but also makes the training session short and 

easy relative to the application. The training sentences are in fact fairly fewj 

moreover, the fact that they are meaningful means that they can be uttered in a 

natural way. However, the speaker is allowed to utter every training sentence 

without any constraint on pronunciation. Each training utterance is sampled at 

10 KHz and 12 Cepstrum coefficients are calculated every 10 ms. 

The forced recognition of each training utterance (step 2) is accomplished by 

making use of one training speaker's prototypes as a reference set [2J and of a 

constrained network. The latter is obtained from the general network 

representation of the language by forcing the word sequence to be uniquely the 
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correct one, while within each word all the valid sequences of diphones are 

permitted, and the general junction rules between adjacent words apply. Fig. 5-a 

FIG. 5-a Diphone network for the word "QUATTRO" ("four"). 

shows the network representation of the Italian digit "quattro" ("four"), with 

different paths corresponding to alternative allowed sequences of diphones. In 

particular, note at the end of the word the diphthong "OU" representing the 

possible junction with a word beginning with "u" (such as "uno"). The path in 

the network through "OU" is permitted but not forced, in order to take into 

account possible hesitations between words. Fig. 5-b shows a portion of a 

training utterance, containing the word "quattro", with the actual output of 

forced recognition. It corresponds to the sequence of diphones attaining the 

highest cumulative similarity score. Each diphone is delimited by its boundaries 

(marked with solid lines on the waveform). From each diphone occurrence a 

possible template for that diphone can be extracted. 

The template eztraction (step 3) is performed for a transitional diphone by 

taking the entire portion of signal corresponding to an occurrence, while for 

steady-state diphones only the central frame of an appropriate occurrence is 
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Templates for some diphones in the word "QUATTRO" as detected 

by the forced recognition. 

chosen (marked with dotted lines in Fig. 5-b). Only one template is derived for 

each different context of each diphonej the template is extracted from the first 

available occurrence of that diphone in the relevant context situation (for 

steady-state diphones occurrences shorter than a given duration are discarded). 

At present all diphones except steady-state ones corrresponding to sonorant sounds 

are considered mono-context; therefore multiple templates are derived only for 

vowels, nasals and liquids. 

Finally (step 4) we apply two different kinds of refinements: template 

checking and dictionary filling. Although the segmentation produced by forced 

recognition is fairly accurate, we check the correctness of the location of the 

automatically derived templates. For steady-state diphones the steadiness of the 

intensity pattern and Cepstrum coefficients is checked against the surrounding 

environment of the template: the variation must not exceed a given threshold. 

For transitions the behaviour of spectral and energetic derivatives is examined. 

Any bad template for a diphone is dropped and, if possible, replaced with 
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another convenient occurrence of the diphone. These checks, together with the 

reliability of forced segmentation, ensure that the templates for each diphone are 

derived from true occurrences of that diphone. 

Finally, we provide a means for dictionary filling. In fact the procedure 

described does not guarantee the extraction of the whole set of templates from 

the training material. For instance a dropped template may not have been 

replaced, or none of the occurrences of a final vowel may be long enough, or a 

certain junction diphone may be missing due to non-fluent pronunciation. Missing 

templates (if any) are simply supplied by the training speaker's dictionary. 

The output of the DB procedure is a manageable diphone template dictionary 

tailored for the speaker. This template dictionary provides a complete and 

correct representation of the lexicou relating to a given application and is part of 

the acoustic knowledge of the system. 

7. EXPERIMENTAL RESULTS 

Different applications are being tested in our Laboratory. Until now only 

one extensive experiment with automatically derived prototypes has been 

completed on the language of sequences of Italian digits. It was mainly 

performed in order to check the adequacy of the diphone bootstrapping procedure, 

but the whole described procedure of generation of the recognizer data bases was 

used. The recognition experiment with bootstrapped templates was done on 20 

sequences of 5 connected digits, each uttered by 19 (9 male and 10 female) 

speakers. Each digit was present 10 times in different contexts in the test set. 

The training set was not acquired at the same time as the test set, thus proving 

that the efficacy of the template set was not influenced by environmental 

conditions. The three reference template dictionaries used for forced recognition 

contained hand-extracted prototypes from other speakers (two males and a 

female). 
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An average word recognition rate (WRR) of 99% corresponding to a rate 

greater than 98.5% with a confidence level of 99%, was obtained over the whole 

experiment, which included 1900 words. This corresponds to a 95.5% recognition 

rate on the 5-digit sequences. These results show the effectiveness of the training 

procedure, as they are only slightly below the average WRR of 99.5% obtained in 

a speaker-dependent recognition experiment with hand-extracted templates. 

Moreover they display a satisfactory improvement over the 88.9% average WRR 

obtained in a speaker-independent test with the training speakers' templates. 

The above experimental results clearly show how our automatic training 

procedure produces reliable template sets (at least for small vocabularies). 

Moreover the procedure not only performed very well on the average, but also 

yielded homogeneous results on all the test speakers: even for the worst speaker 

96 words out of 100 were correctly recognized. 

8. CONCLUSIONS 

We have presented a knowledge generation procedure for a diphone-based 

CSR system, which generates all the pieces of information relating to any given 

application in a completely automatic way. The procedure can also train the 

system on new speakers deriving a complete and correct template dictionary for 

each of them. 

We make use of the procedure, which has proved to be both fast and 

reliable, as a tool for testing our system in new recognition tasks with a great 

number of different speakers. However, the main aim of the procedure is to 

enable the system to be used by unskilled users in practical applications. In fact 

none of the steps performed by the procedure require any intervention by the 

user, who only needs to supply the lexicon and a BNF representation of the 

grammar of the language. 
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The procedure has been developed in a modular way, so that it is possible 

to use the various modules separately, if only one specific task (such as the 

search for the diphone inventory, or the template bootstrapping) has to be 

performed. 
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ABSTRACT 

A dynamic frequency warping algorithm has been used to match the spectra 

of the vowels of one speaker against the spectra of vowels of different speakers. 

Although the method resulted in a transformation which produced a good match, 

it was not accurate as a speaker-independent vowel classifier. With reference 

spectra from the vowels of male speakers and test spectra from the vowels of 

female speakers, and vice versa, the recogntion scores were only 33%, whilst with 

reference and test spectra from different utterances of the same speaker the mean 

score was 96%. 

Various parameters of the spectra and the DFW algorithm have been studied. 

It was found that limiting the frequency range of the spectra to approximately 

telephone bandwidth (250-3200 Hz) increased the male-female scores by about 6%. 

Changing the frequency scale to barks or reducing the order of the linear 

prediction analysis reduced the recognition scores. Adjusting the warping window 

in the dynamic programming algorithm so that it was 160 Hz wide above the 

diagonal raised the male-female recognition score to 48.6%. 
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INTRODUCTION 

The vowels of female speakers have higher formant frequencies than those of 

males because of their shorter vocal tracts. This causes no difficulty for a 

human listener, but the mechanism by which the compensation for different size 

vocal tracts occurs is not understood. It is possible that a value derived from 

the average fundamental frequency is used as a normalising factor, or that the 

average values of the formant frequencies are used. Perceptual experiments by 

Fujisaki and Kawashima (1968) and Ainsworth (1975) suggest that either or both 

of these factors are involved. 

A more detailed examination of the formant frequencies of the vowels 

produced by male and female speakers, however, shows that a non-linear 

transformation is required to change the formant frequencies of a male vowel into 

those of a female vowel (Fant, 1975). 

DYNAMIC TIME WARPING 

In the time domain a superficially similar situation exists. Not only is the 

total duration of a fast utterance of a word shorter than that of a slow utterance 

of the same word, but the duration of certain sounds are relatively much shorter 

in the fast utterance. In automatic speech recognition systems it is possible to 

minimise the effects of these differences in duration by means of dynamic 

programming algorithms which compress and expand in the time scale of a test 

word in order to effect an optimal match with a reference word. This technique 

is known as dynamic time warping (Sakoe and Chiba, 1978; Myers, Rabiner and 

Rosenberg, 1980). 
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DYNAMIC FREQUENCY WARPING 

In the present project a number of dynamic programming algorithms have 

been applied in the frequency domain to the problem of matching the vowels of 

one speaker against those of another speaker (Paliwal and Ainsworth, 1985). 

Suppose that the log-power spectrum of a test vowel uniformly sampled at m 

frequency values, is: 

and the spectrum of a reference vowel (of another speaker) is: 

In order to obtain the optimum warping path between these spectra, the 

distance D (~ hl is computed along all possible warping paths between the points 

(1, 1) and (m, m) constrained by the warping window. 

The distance D(~ hl is computed as follows. The local distance between the 

ith component of the test spectrum and the jth component of the reference 

spectrum is given by: 

d(i, j) = (a. _ b.)2. 
1 J 

The cumulative distance function at the point (i, j) is given by Sakoe and Chiba 

(1978): 

g(i-l, j) + d(i, j) 

g(i, j) = min g(i-l, j-l) + 2d(i,j) 

g(i, j-l) + d(i,j) 

with the initial condition g(I, 1) = 2d(I, 1). 

The distance D(!!,hl along the optimum warping path is computed from the 

final cumulative distance function by: 
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D(~ hl = gem, m)/2m. 

VOWEL ANALYSIS AND CLASSIFICATION 

The eleven English vowels were spoken in /h V d/ context ten times by each 

of eight speakers (four male and four female). The waveforms were digitised at 

10 kHz and displayed on a CRT. A 25.6 msec segment from the steady state 

part of each vowel was selected manually. The segment was weighted by a 

Hamming window function and a 10th order linear prediction analysis was 

performed using the autocorrelation method (Makhoul, 1975). The log-power 

spectrum was obtained from the resulting ten linear prediction coefficients by 

computing a 256-point discrete Fourier transform using the fast Fourier transform 

algorithm. Reference spectra were computed for each speaker by averaging the 

repetitions of the spectra of each vowel. 

The above dynamic frequency warping (DFW) algorithm was applied to each 

pair of test and reference spectra. Vowel classification was achieved by choosing 

the reference class, p, for which: 

for all q except p = q. 

A number of parameters affecting the vowel spectra and the warping window 

were varied in order to study their effects on the performance of the vowel 

classification system. 
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SPEAKER-DEPENDENT AND SPEAKER-INDEPENDENT 

RECOGNITION 

In order to provide base-line data, the vowel classifier was tested in both 

speaker-dependent and speaker-independent modes. The test patterns were the 

12S-point log-power spectra from each speaker. The reference patterns were the 

averaged spectra from each speaker. The system was trained with the vowels of 

each speaker one at a time. 

The warping window was a region parallel to the diagonal bounded by 

j = i - rand j = i + r, where r is the warping window length. It had been 

shown previously (Paliwal and Ainsworth, 1985) that recognition performance does 

not depend greatly on warping window length in the rang r = 0 to 8. (The 

units of r are the spectrum range (5 kHz)jno. of points (128) = 39 Hz.) It was 

found that when trained with one male speaker and tested with another, the 

recognition score deteriorated with increase in r, whereas when trained with 8 

male speaker and tested with a female, the recognition score increased slightly 

with increase in warping window length. In. the present experiment 8 value of 

r = 4 was employed. 

The results are shown in Table 1. In speaker-dependent mode a mean 

recognition score of 96.1% was obtained for both the male and female groups of 

speakers. In speaker-independent mode, where the reference vowels have been 

excluded from the test set, the performance dropped dramatically. With male 

reference vowel spectra and female test spectra, or vice versa, the mean 

recognition score was about 33%. 
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TABLE 1 

Recognition scores obtained with speaker-dependent and speaker-independent vowel 

classifiers using dynamic frequency warping. 

Speaker Reference Test Recognition 

vowels vowels score (%) 

Male Same male 96.1 

Dependent Female Same female 96.1 

Both Same speaker 96.1 

Male Different male 53.4 

Female Different female 44.0 

Independent Male Female 33.6 

Female Male 32.2 

Both Different speaker 39.7 
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NUMBER OF POINTS IN THE SPECTRUM 

It has long been known that the most important factors for the 

discrimination of vowel sounds are frequencies of the first two formants (Pols, van 

der Kamp, and Plomp, 1969). These occupy the frequency range from about 

200-3000 Hz. It is possible that only information in this range contributes to 

vowel recognition, and by ignoring information outside this range little 

deterioration in performance would result. The advantage of restricting the 

number of points is that the amount of computation is reduced. 

The experiment described in the last section was repeated, but only using 

the first SO-points of each spectrum. This effectively reduces the frequency range 

to about 3200 Hz. The computation time was about halved. 

The results are shown in Table 2. In speaker-dependent mode the 

recognition scores were reduced by about 3% to 93%. In speaker-independent 

mode, however, the mean recognition score increased by about 3% to 43%. The 

largest increase was found with male reference patterns and female test patterns, 

or vice versa, where the mean recognition scores increased by about 6% to 39%. 

PSYCHOPHYSICAL SCALING 

The points in the spectra. are equally spaced in the physical frequency scale 

of Hertz. This was a consequence of employing the fast Fourier transform 

algorithm in the analysis. Perceptual studies, however, have shown that another 

frequency scale is more appropriate when listening to sounds. This is the Bark 

scale which effectively places the sampling points nearer together in the low 

frequencies and further apart in the high frequencies. An appropriate 

transformation is given by Schroeder, Atal and Hall (1979) as: 

f = 650 sink (x/7) 

where r is the frequency in Hertz and x is the frequency in Barks. 
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TABLE 2 

Recognition scores obtained for speaker-dependent and speaker-independent vowel 

classifiers using DFW with the frequency of the spectra limited to 0-3200 Hz. 

Speaker Reference Test Score 

Male Same male 92.7 

Dependent Female Same female 93.0 

both Same 92.9 

Male Different male 48.7 

Female Different female 46.4 

Independent Male Female 39.3 

Female Male 39.2 I 

Both Different speaker 42.8 
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Psychophysical spectra were constructed using this transformation, and the 

experiment with the vowel classifier was repeated with the vowels from all 

speakers forming the reference patterns and the vowels from the male speakers as 

the test pattern. 

The results are given in Table 3. They show that the scores are about 5% 

less with the psychophysical spectra compared with the scores obtained with the 

physical spectra. 

NUMBER OF LINEAR PREDICTION COEFFICIENTS 

For the production of a neutral vowel the vocal tract can be modelled 

approximately by a uniform tube closed at one end (the glottis) and open at the 

other (the lips). The resonances of this tube are uniformly spaced. For a male 

speaker the formant frequencies are approximately at 500, 1500, 2500 Hz etc., 

making a total of five formants below 5000 Hz. For a typical female speaker the 

formant frequencies are about 20% higher, i.e. at 600, 1800, 3000 Hz etc. The 

female vowel has only four formants below 5000 Hz. One of the reasons why the 

male-female recognition scores are so low is that the DFW algorithm is 

attempting to match spectra having different numbers of formants, although they 

represent the same vowel class. 

One way of reducing the number of apparent formants in a spectrum is to 

reduce the number of linear prediction coefficients in the analysis. This 

effectively models the vocal tract with a filter having less poles. In order to 

examine whether these simplified spectra are more useful for vowel recognition, 

the experiment was repeated with 6th order linear prediction analysis. 

The results of this experiment are also shown in Table 3. It can be seen 

that 6th order linear prediction analysis is less useful than 10th order linear 

prdiction analysis for vowel spectra measured in either physical or psychophysical 

frequency units. 
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TABLE 3 

Comparison of the recognition scores obtained with the spectra in Hz and in 

barks. The spectra obtained from the vowels of the male speakers were employed 

as the test patterns. 

Reference patterns 10th order LPC 6th order LPC 

Hz Barks Hz Barks 

Speaker-dependent males 92.7 86.1 88.0 78.4 

Speaker-indpendent males 48.7 42.6 43.2 34.4 

Females 39.2 33.2 36.4 33.5 
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LOW FREQUENCY LIMITATION 

Although linear prediction analysis attempts to separate the source from the 

filter function of speech production, there are still major differences in the low 

frequency region of the spectra of vowels produced by different speakers. It is 

expected that the information in this region contributes little to the classification 

of the vowels of different speakers, so an experiment was performed in which the 

low frequency information was successively eliminated. The vowels from the male 

speakers were used to form the reference patterns and those from the female 

speakers were used as the test patterns. 

The results are shown in Table 4. For the 3200 spectrum, there was a 

slight increase in the recognition score when the low frequency of the spectrum 

was limited to 250 Hz but this decreased at 500 and 1000 Hz. A similar pattern 

of results was obtained for the full spectrum (up to 5000 Hz) although there was 

little difference between 0 and 250 Hz. 

SIZE OF THE WARPING WINDOW 

All the experiments described so far have employed a warping window which 

is symmetrical about the diagonal. This is appropriate for a speaker-independent 

system. However, although the test speaker is unknown, the identity of the 

speaker ~ who forms the reference patterns can be known. If he is a male speaker 

it might be expected that vowel spectra from another male speaker would need to 

be compressed or expanded with equal probability in order to obtain the test 

match. With vowel spectra from a female speaker, however, it would be expected 

that more compression than expansion would be required. To test this hypothesis 

an experiment was carried out with asymmetrric warping windows, with male 

reference patterns and female test patterns. 
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TABLE 4 

The effect of low frequency limitation on recognition scores for the 3200 Hz and 

5000 Hz spectra. Vowels from the male speakers were used as the refernce 

patterns and those from the female speakers as tet patterns. 

Recognition scores (%) 

Low frequency 

(Hz) 

3200 Hz 5000 Hz 

0 39.3 33.6 

250 40.1 33.2 

500 37.8 29.3 

1000 29.4 24.8 
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With a symmetric warping window bounded by j i - 4 and j = i + 4, a 

recognition score of 39.3% was obtained. With a warping window bounded by 

j = i and j == i + 8, the score increased to 47.0%. With a warping window 

bounded by j = i - 8 and j = 0, the score fell to 24.4%. Thus for male 

reference patterns and female test patterns an asymmetric warping window 

increases the recognition score. 

A parametric study of the window size was performed next. The warping 

window was bounded by j == i + r and j = i, where r is the window size. The 

spectra were limited to a frequency rage of 250 to 3200 Hz. The results are 

shown in Table 5. A maximum recognition score of 48.6% occurred with a 

warping window size of r = 4, i.e. with a warping window 160 Hz wide. 

CONCLUSIONS 

A dynamic frequency warping algorithm has been studied as a method of 

recognizing the vowel sounds of different speakers. It was found to give good 

results (96.1% recognition scores) for a speaker-dependent system, but poor results 

(39.7%) in a speaker-independent system. In particular with reference patterns 

obtained from the vowels of male speakers and test patterns from the vowels of 

female speakers, and vice versa, the recognition scores were only 33%. 

Limiting the high frequency of the spectra to 3200 Hz raised the male-female 

recognition scores to 39%, and this was increased to 40% by limiting the 

frequency range to 250-3200 Hz. It was found that changing to a psychophysical 

frequency scale (barks) or reducing the order of the linear prediction analysis both 

had a deleterious effect on the recognition scores. 

The greatest increase in recognition score, to 48.6%, ws obtained for the 

male reference patterns and female test patterns by using an asymmetric warping 

window in the dynamic programming algorithm. It is suggested that further 

investigation into the optimum shape of the warping window is required. 



www.manaraa.com

402 

TABLE 5 

Recognition scores obtained with an asymmetric warping window bounded by 

j = i + r and j = i. Vowels from the male speakers were used as the reference 

patterns and vowels from the female speakers as the test patterns. 

Warping window size Recognition score 

(Hz) (%) 

0 38.4 

80 44.4 

160 48.6 

320 47.0 

480 43.8 
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ABSTRACT 

DYNAMIC TIME WARPING ALGORITHMS FOR 
ISOLATED AND CONNECTED WORD RECOGNITION 

J. di Martino 
C.R.I.N. - Universite de Nancy I 

B.P. 239 - 54506 Vandoeuvre 

In this paper we present a new formulation of the dynamic programming recur
sive relations both for word and connected word recognition that permits rela
xation of boundary conditions imposed on the warping paths, while preserving 
the optimal character of the dynamic time warping algorithms. 

I. INTRODUCTION 

One of the most interesting approach for word recognition and connected word 
recognition is based on the dynamic programming approach. Several studies have 
shown that the technique of dynamic programming is very well suited for com
pensating for time distorsions due to the variability of elocution speed [lJ
[8J. However, most of the algorithms that have been presented until now as
sume that the extraction of the vocal forms from the ambiant noise is error 
free and that the end-words are not too much corrupted by parasite noises. 
Unfortunately in practice such conditions are not always respected. For ins
tance most of the speech detectors have ~reat difficulties in capturing weak 
energy end""phonemes. Some attempts [lJ [3J [4J have been made to take into account 
these problems, but all the strategies used failed in trying to maintain the 
optimality of the dynamic matching. 

In this paper, after a brief summary of the dynamic programming technique, 
we introduce new dynamic recursive relations both for isolated word recogni
tion and connected word recognition. These relations compensate for distor
sions that may affect the end-words and at the same time preserves the opti
mality of the dynamic time warping algorithms. Preliminary experimental results 
in the case of isolated word recognition are given. 

II. SOME NOTIONS ON TIME ALIGNMENT 

Let T t(l), t(2), ... t(i), ... t(I) 
and 

R r(1), r(2), ... r(j), ... r(J) 

be two speech patterns, where t(i) and r(j) are multidimentional feature 
vectors characterizing the speech signal at a given instant. The purpose of 
time alignment is to make a time registration between these vectors so as to 
synchronise the time scales of the two patterns. This registration can be 
formalized mathematically as the problem of finding among the functions : 

W : :lNI x J ~:lNI x:IN J 

k ---4 W(k) = (i(k),j(k» 

NATO AS! Series, Vol. F16 
New Systems and Architectures for Automatic Speech 
Recognition and Synthesis. Edited by R. De Mori and C. Y. Suen 
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- where ~p = {t, 2, ... p} and 
associates the feature vector 
vector j(k) of the pattern 

W(k) . d' t h h kth . . d ln lca es t at t e COlnCl ence 
i(k) of the ~attern T with the feature 

R -

the optimal one that realizes the best mapping between the two patterns. The 
mappings Ware called warping functions. In order for the warping paths to 
respect time fluctuations of the speech signal, the following monotonic con
ditions must be applied to the warping paths : 

{ 
i (k - 1) ~ i (k) 

(1) 
j (k - 1) ~ j (k) 

Furthermore, to eliminate possible unrealistic contractions or dilatations, 
local constraints, introducing continuity and slope conditions, must be ap
plied. Relation (2) is an exemple of a local constraint due to Itakura [8} : 

f j (k + 1) - j (k) 
(2) 

j (k + 1) - j (k) 

0, 1, 2 

1, 2 

If j(k) + j(k - 1) 

If j(k) = j(k - 1) 

Finally, to avoid omission of word-end feature vectors through warping the 
end-frames of the two patterns are matched by the following boundary condi
tions : 

{ 
i (1) 

(3 - a) 
j(1) 

where K is the number of points of 

{ 
i(K) I the warping path -

(3 - b) 
j (K) J 

The optimal warping path is determined using the following metric on the set 
of warping functions 

(4) 

- where 

K 
D(W) = ~=1 d(i(k), j(k)) * P(k) 

N(P) 

K is the number of points of the warping path, 
d(i(k), j(k)) is a local distance between the i(k)'th vector 

of the pattern T and the j(k)'th vector of the pattern R, 
N(P) is a normalization factor that depends on the type of the 
weighting function used. The purpose of this factor is to com
pensate for the effect of K that is to say to make the metric 
independent of the length of the warping path. 

The optimal path is then defined by : 

(5) W = ARGMIN D(W) . 
W 

In combining relation (4) 
zation can be solved as : 

with relation (5) the problem of time normali-

(6) MIN 

I;K 
K=l d(i(k), j(k)) * P(k) 

K, i(k), j (k) N(P) 
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The typical weighting functions generally used are 

(7) 

(8) 

PaCk) 

Ps(k) 

i (k) - i (k - 1) 

i(k) - i(k - 1) + j(k) - j(k - 1) . 

The first is asymmetric since it is only function of the index of the projection 
of the pattern into the horizontal axis while the second one is symmetric' being 
function of the indices of both the two patterns. 

The motivation of this choice stems from the fact that if we define the nor
malization factor N(P) by: 

then it 

(9) N(P) = IK P(k) , 
k=1 

is easy to show, by substituting relations (7) and (8) ~n (9) 
and in taking into account relations (3-a) and (3-b) that N(Pa) = I and 
N(Ps) = I + J Consequently, N(P), for P = Pa or P = Ps , is a constant, 
so can therefore be factorized in relation (6) 

(10) ~ 1 MIN K 
D(W) = N(P) * K, i(k), j(k) ~=1d(i(k), j(k» * P(k) . 

Relation (10) can be solved by dynamic programminR owing to the following 
local optimality principle introduced by Bellman [9J 

- let C[(1, 1), (i ,j)J be the optimal path joining the point 
(1, 1) and the point (i, j) , then for any point (i', j') belon
ging to C[1, 1), (i, j)], the o~timal path C[(1, 1), (i', jl)] 
is included in C[(1, 1), (i, j)J as a portion of it. 

Thus if we define D(i, j) as the unnormalized distance associated with the 
optimal path C[(1, 1), (i, j)] , in applying the local optimality principle 
D(i, j) can be expressed as : 

( 11) D (i, j) MIN D (i I, j ') + dp « i " j I ), (i, j» 
(i I, j I ) 

e V(i, j) 

where (i', j') belongs to the neighbourhood V(i, j) of the point (i, j) 
defined by the local constraint - for example in the case of the local cons
traint defined by relation (2), V(i, j) ~s the set 
{ (i - 1, j), (i - 1, j - 1), (i - 1, j - 2)} - and dp « i', j I ), (i, j» H the 
weighted distance between the point (i', j') and the point (i, j) 

Consequently thanks to the recursive expression of D(i, j) given by relation 
(11) the following simple algorithm evaluating D(W) is easily obtained: 

1) INITIALIZATION 

D(1, 1) d(1, 1) * p(1) 
D ( 1, j) = + 00 for j = 2, ... , J 

2) DYNAMIC PROGRAMMING 

FOR 2 ~ i ~ I Do 
FOR 1 ~ j ~ J Do 
COMPUTE RECURSIVELY Dei, j) 
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3) EVALUATION OF THE DISSIMILARITY DISTANCE 

D(W) = N(~) * D(I, J) . 

III. GENERALIZATION OF THE DYNAMIC PROGRAMMING RECURSIVE RELATIONS 

We have seen previously that if the weighting functions are Pa or Ps and 
if the boundary conditions expressed by relations (3-a) and (3-b) are 
applied to the warping paths, then the normalization factor is a constant. 
From this result and from the local optimality principle we get the standard 
dynamic programming recursive relation given by (11) . If now we are inte
rested in relaxing the boundary conditions so that the DP matching algorithm 
compensates fordistorsions that may corrupt the end-words, then as in this case 
the length constancy property is not guaranted, it results that (11) does not 
hold. To make clear this point it is interesting to show that in general when 
the boundary conditions are relaxed the length constancy property is no more 
valid. 

Let us make the assumption that the initial boundary conditions are relaxed 
- in this discussion we shall not consider the terminal boundary conditions 
because the results would be the same - and let us consider first the case 
of a symmetric 
is authorized 
Cvl, Cv2, Cv3 
with vi" vj 

local constraint. If the relaxation of the boundary conditions 
on the vertical axis, see figure l-a , the lengths of the paths 
starting respectively at the points (1, v1), (1, v2), (1, v3) 
if i # j and ending at the fixe point (I, J) are: 

(12) R,(Cvi) I + J - vi + 1 for i 1, 2, 3 

and as we have assumed that vi # vj if i # j we get R,(Cvi) # R,(Cvj) if 
i =f j . 

In the same way, if the relaxation of the initial boundary conditions is autho
rized on the horizontal axis, see figure l-b, the lengths of the paths Chl, 
Ch2, Ch3 starting respectively at the points (hl, 1), (h2, 2), (h3, 3) with 
hi # hj if i # j and ending at the point (I, J) are: 

(13) R,(Chi) = I + J - hi + 1 

and as hi # hj we get as previously R,(Chi) # R,(Chj) if i =f j . From these 
results we can already conclude that if the local constraint is symmetric then 
the length constancy property does not hold if the initial boundary conditions 
are relaxed. 

Let us now consider the case of an asymmetric local constraint. If the initial 
houndary conditions are relaxed on the vertical axis the lengths of Cvl, Cv2, 
Cv3 are : 

(14) R,(Cvi) = I for i = 1, 2, 3 • 

On the other hand if the relaxation is realized on the horizontal axis, the 
lengths of Chl, Ch2, Ch3 are: 

(15) R,(Chi) = I - hi + 1 

and here again we have R,(Chi) =f R,(Chj) if i # j 
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In conclusion we have seen that whatever the type of the local constraint the 
length constancy property does not hold generallyif the initial boundary con
ditions are relaxed. The only case where the property is still valid is when 
the relaxation is done in the vertical axis with an asymmetric constraint. 

R 

v3 
v2 
vl 

J 
r---------------------~ 

1~ __________________ _J 

1 
T 

a- Vertical relaxation 
of the initial 
boundary conditions 

I 

R 

J..--________ -:7I 

1 
1 h 1 h2 h3 T 

I 

b- Horizontal relaxation 
of the initial 
boundary conditions 

Figure 1 RELAXATION OF THE INITIAL BOUNDARY CONDITIONS. 

In order to take into account variations of the path lengths when the boun
dary conditions are relaxed, a generalization of the optimality principle is 
needed 

- LET B be a sub-set of the matching plane PL, containing all the 
points that can be starting points of the warping paths, 

- LET P PL + B the function that gives at each point (i, j) the 
starting point of the optimal path ending at (i,j), 

- LET C[p(i, j), (i, j)J be the optimal going from the point p(i, j) 
to the point (i, j) , 

THEN for each point ( . , 
~ , j , ) belonging to C[p(i, j), (i, j)] we have 

1. p(i', j') = p(i, j) 

2. C[p(i', j'), (i' ,j')] is included in C[p(i, j), (i, j)] , as a 
portion of it 

With this new local optimality principle, to evaluate the accumulated distance 
D(i, j) recursively from the accumulated distances D(i', j') where the points 
(i', j') belong to the neighbourhood V(i, j) of the point (i, j) defined 
by the local constraint, it is necessary to use a two-phase dynamic programming 
strategy [lOJ [11J : 

- in a first phase the point (i', 5') € V(i, j) through which the opti
mal path goes must be determined in taking into account the length differences 
of the warping paths ending at (i, j). So a normalization of the accumulated 
distances by the length of the warping paths must be realized : 

(16) (i', 5') = ARGMIN D (i " j') + dp « i " j'), (i, j)) 

(i', j') ,Q, (C [p (i " j'), (i' ,j')]) + ,Q, (C [ (i' , j ') , (i, j )] ) 
€ V (i, j) 
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(17) D(i, j) =D(i', j') +dp«i', j'), (i, j» 

(18) 

( 19) 

p(i, j) = p(i', j') 

JI,(C[p(i, j), (i, j)J) JI,(C[P(i', j'), (i', -')]) 
+ JI,(C[(i', j'), (i, j)J) . 

Relations (16), (17), (18) and (19) can be considered as a generalization of 
relation (11) • 

For example if the local constraint used is the symmetric Sakoe and Chiba 
local constraint [7J and if JI,(i, j) denotes an abbreviation of 
JI,(C[p(i, j), (i, j)J) then relations (16), (17), (18) and (19) can be eva
luated in the following manner : 

1. FIRST PHASE 

2. 

d = MIN 

D(i - 2, j - 1) + 2 * d(i - 1, j) + d(i, j) 
JI,(i - 2, j - 1) + 2 + 1 

D(i - 1, j - 1) + 2 * d(i, j) 

JI,(i - 1, j - 1) + 2 

D(i - 1, j - 2) + 2 * d(i, j - 1) + d(i, j) 
JI,(i - 2, j - 1) + 2 + 1 

SECOND PHASE 

IF (d = d1) THEN D(i, j) = D(i-2, j - 1) +2*d(i-1, j) 

p(i, j) = p(i-2, j - 1) 

JI,(i, j) = J/,(i-2, j - 1) + 3 

IF (d d2) THEN D(i, j) =D(i-1, j - 1) + 2 * d(i, j) 

p(i, j) =p(i-1, j - 1) 

JI,(i, j) =JI,(i-1, j - 1) + 2 

IF (d d3) THEN DCi, j) D(i - 1, j - 2) + 2 * d(i, j - 1) 

p(i, j) p(i - 1, j - 2) 

JI,(i, j) J/,(i-1, j - 2) + 3 

+ d(i, j) 

+ d(i, j) 

Owing to relations (16), (17), (18) and (19) it is possible to use a symme
tric local constraint even when the boundary conditions are relaxed. That is 
the reason why we call the algorithm based on relations (16), (17), (18) and 
(19) using a symmetric local constraint UESLS "Unconstrained End-points Sym
metric Local Strategy". 

But in fact (16), (17), (18) and (19) are more general than that because they 
permit the implementation of local constraints weighted by any kind of weigh
ting functions. For example if we consider the Sakoe and Chiba constraint 
weighted by arbitrary coefficients as indicated by figure 2 then relations 
(16), (17), (18) and (19) can be evaluated as follows: 
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1. FIRST PHASE 

D(i - 2, j - 1) + a * d(i - 1, j) + b * dei, j) 
t(i-2, j-1) +a +b 

d MIN D(i - 1, j - 1) + C * dei, j) 

2. 

Hi-l, j -1) + c 

D(i - 1, j - 2) + d * dei, j - 1) + C * dei, j) 

t(i - 1, j - 2) + d + e 

SECOND PHASE 

IF (d = d1) THEN D(i, j) D(i-2, j-1)+a*d(i-1, 

p(i, j) p(i-2, j - 1) 

t(i, j) t(i-2, j - 1) + a + b 

IF (d d2) THEN D(i, j) D(i - 1, j-1)+c * dei, j) 

p(i, j) p(i - 1, j - 1) 

t(i, j) t(i - 1, j - 1) + c 

j) +b * dei, j) 

IF (d d3) THEN D(i, j) D(i - 1, j-2)+d*D(i, j - 1) + e * dei, j) 

Figure 2 

p(i, j) p(i - 1, j - 2) 

t(i, j) t(i - 1, j - 2) + d + e 

b 

a c e 

d 

THE SAKOE AND CHIBA LOCAL CONSTRAINT WEIGHTED 
BY ARBITRARY COEFFICIENTS. 

IV. EXTENSION OF THE GENERALIZED DYNAMIC PROGRAMMING RECURSIVE RELATIONS IN 
THE CASE OF THE CONNECTED WORD RECOGNITION PROBLEM 

IV.1. Introduction 

One of the first attempt to solve the problem of the connected word recogni
tion was undertaken by Sakoe [12J. He showed that the minimization process 
could be broken down into two dynamic programming levels, a word level where 
any portion of the input pattern is matched to all the reference patterns, and 
a phrase level where the best string of reference patterns is found owing to 
the best partial distances obtained in the word level. Myers and Rabiner [13J, 
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later showed that a computationnaUymore efficient method can be obtained in 
determining the optimal warping path in a "level building" fashion. The Myers
Rabiner algorithm, although an interesting improvment of the Sakoe algorithm 
is not very well suited for real time recognition. Recently Bridle et al. [14J 
and Nakagawa [15J, independently proposed an algorithm that eliminates the 
weaknesses of the level building algorithm. This new algorithm is a one-stage 
algorithm, that is to say no backward jumps on the input pattern are necessary 
during the matching process, as is the case for the level building algorithm. 
Furthermore all the local distances are evaluated only once. However this al
gorithm is difficult to grasp because the formalism used clouded the useful 
analogy with the word recognition problem. In a recent paper, Ney [16J has 
presented a new formalism relying on the use of certain path constraints both in 
the word interior and at the end-words that links tightly the connected word recogni
tion problem and provides a new and simpler formulation of the algorithm designed by 
Bridle et al and Nakagawa -hence forward refered as the Bridle-Nakagawa algorithm-. 

IV.Z. The pattern matching problem 

Let T be the test pattern of 
renee patterns Ry of length 
ning procedure. TRe purpose of 
best "super-reference" pattern 

length I in frames and V a 
J that have been obtained by 
t~e connected word recognition 

set of N refe
an isolated trai
is to find the 

defined as the concatenation of ~ 
input pattern. In this problem, ~ 

known. 

reference patterns that best matches the 
and the boundaries of the words are not 

IV.3. The dynamic recursive relations of a one-pass algorithm for connected 
word recognition 

The main idea of the one-pass algorithm relies in determining the optimal path 
in a three-dimensional space as illustrated by figure 3. 

R 
N 

RZ 

SPN ~ 
I 

I I 
I 

~il _____ ~: I I 
I I 

I 
I 

SPZ I 
I 

I 

~ 

Figure 3 

I I 
I I 

I I 
I I 

I 

Y :/ I 

I 

I 

i 

ILLUSTRATION OF A WARPING PATH IN THE 
BRIDLE-NAKAGAWA MATCHING ALGORITHM. 

I 
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Each point in this matching space can be represented by a triple (n, i, j) 
where n designates the sub-space SPn relative to the reference pattern Rn; 
i the current index of the input pattern, and j the j'th frame of Rn. 
With this formalism a warping path W is given as a sequence of points 
(n(k), i(k), j(k)) with k = 1, 2, .•• , K ,where K is the number of points 
of the warping path. The problem of the connected word recognition can now be 
stated in a similar manner as for the word recognition, that is to say, it can 
be solved by the following global metric minimization : 

K 
~=1 d(n(k), i(k), j(k)).P(k) 

( 17) MIN 
K, n(k), i(k), j(k) N(P) 

where d(n(k), i(k), j(k)) 
of the input pattern and the 

is the local distance between the 
j(k)'th frame of Rn(k) . 

i(k)' th frame 

In the case of a symmetric local constraint, (17) depends on the length of the 
super-reference patterns that is obviously not constant, so that the normaliza
tion factor N(P) cannot be factorized. To get around the difficulty, only 
asymmetric local constraints with no relaxation of the boundary conditions has 
hitherto been considered. In that case N(P) is equal to the length of the 
input pattern and the minimization problem can be expressed as : 

(18) D*(W) = MIN rK d(n(k), i(k), j(k))*P(k) 
K, n(k), i(k), j(k) k=l 

- the asterisk signifying that the global distance D is not normalized -

In order to solve (18) by a dynamic programming technique, by applying the op
timality principle of Bellman, it is necessary to define for each point 
(n, i, j) of the matching space a minimum accumulated distance D(n, i, j) . 
And, as for the word recognition problem, the evaluation of this distance can 
be realized recursively as a function of the minimum distances associated to 
the points belonging to the neighbourhood V(n, i, j) of the point (n, i, j) 
defined by the local constraint used 

(19) D(n, i, j) = MIN D(n', 
(n', i', j') 

i', j') + dp «n' , . , 
]. , j'),(n,i,j): 

e V(n, i, j) 

where dp«n', i', j'),(n, i, j)) denotes the weighted distance of the local 
path going from the point (n', i', j') to the point (n, i, j). As was clearly 
shown in Ney's excellent tutorial paper [16J two types of neighbourhood must be 
defined : a whitin-template neighbourhood at the interior of a word and a betwee: 
template neighbourhood at the boundaries of the words. Assuming the local cons
traint is the simple constraint with no slope conditions, shown in figure 4, 
then the within and between template neighbourhoods can be defined respectively 
by (20) and (21) : 

(20) V(n, i, j) { (n, i - 1, j) , (n, i - 1, j - 1), (n, i, j - 1)} 
with j > 1 

(21) V(n, i, j) { (n, i - 1, j) , (n, i - 1, In') , n' 1, 2, ... N} 
with j = 1 
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Figure 4 A SIMPLE LOCAL CONSTRAINT WITH NO SLOPE CONDITIONS. 

For further details, see [16J. Owing to relations (19), (20) and (21) the con
nected word recognition problem can be solved in a similar manner as the word 
recogn~t~on problem - the only differences lying in the introduction of another 
loop allover the reference patterns and of backtrakirig pointers -. It is in 
this last point that lies the original approach of Ney. 

As now relation (19) can be regarded as just an extension of relation (11), the 
generalization of relation (19) in the case of a relaxation of the boundary 
conditions can be obtained by analogy with the relations we get for word reco
gnition : 

1. FIRST PHASE RELATION 

(22) (fi', i', J' ) ARGMIN 
(n' , i' ,j , ) 
8 V(n,i,j) 

2. SECOND PHASE RELATION 

D (n ' ,i ' ,j ') + dp ( (n ' ,i ' ,j , ), (n, 
£(C[p(n' ,i' ,j'), (n' ,i' ,j')]) + 
£ (C [(n' , i' ,j , ), (n, i, j)]) 

(23) D(n, i, j) D (fi', i', j') + dp (fi', i', j'), (n, i, j» 

(24) p(n, i, j) p(fi', i', j') 

i, j» 

(25) £(C[p(n, i, j), (n, i, j)]) )(, n,~,J, n,~,J n(c~(-' -, -') (-' -, -')]) + 
£(C (fi', i', j'), (n, i, j)]) 

where p(n, i, j) 
the point (n, i, 

denotes the starting point of the optimal path going through 
j) . 

In order to illustrate how relations (22), (23), (24) and (25) can be implemen
ted in a practical case let us assume that the local constraint used is the sim
ple local constraint with no slope conditions weighted by arbitrary coefficients 
- figure 5 - and distinguish the two types of neighbourhoods. The notation 
£(n, i, j) is an abbreviation of £(C[p(n, i, j), (n, i, j)]) . 

Case of a within-template neighbourhood (j > 1) : 

D(n, i - 1, j) + a * d (n, i, j) 
= d1 ten, i - 1, j) + a 

d MIN D(n, i - 1, j - 1) + b * d (n, i, j) = d2 
£(n, i - 1, j) + b 

D(n, i, j - 1) + c * d(n, i, j) 
d3 = £(n, i, j - 1) + c 
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d MIN 

IF (d 

IF (d 
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d1) THEN D(n, i, j) D(n, i - 1, j) + a*d(n, i, j) 

pen, i, j) pen, i - 1 , j) 

ten, i, j) ten, i - 1, j) + a 

dZ) THEN D(n, i, j) D(n, i - 1, j - 1) +b*d(n, i, j) 

pen, i, j) pen, i - 1, j - 1) 

ten, i, j) ten, i - 1, j - 1) + b 

d3) THEN D(n, i, j) D(n, i, j - 1) + C * den, i, j) 

pen, i, j) pen, i, j - 1) 

ten, i, j) ten, i, j - 1) + c 

between-template neighbourhood (j = 1) : 

D(n, 
£en, 

MIN D(n, 
n ' ten, 

d1 ) THEN 

dz) THEN 

Figure 5 

i - 1, j) + a*d(n, i, j) d1 i - 1, j) + a 

i - 1, In') +b*d(n, i, j) 
dZ i - 1), In') + b 

D(n, i, j) = D(n, i - 1, j) + a*d(n, i, j) 

pen, i, j) pen, 1. - 1, j) 

ten, i, j) ten, i - 1 , j) + a 

il' = ARGHIN D(n, i - 1 , In') + b * den, i, j) 
n ' Hn, i - 1, In') + b 

D(n, i, j) D(il, i - 1, Jil' ) + b * den, i, j) 

pen, i, j) = p(il ' , i - 1, Jil' ) 

£en, i, j) = t (il I , i - 1, Jil' ) + b 

a 

b c 

THE LOCAL CONSTRAINT WITH NO SLOPE CONDITION 
WEIGHTED BY ARBITRARY COEFFICIENTS. 

v. SOME CONSIDERATIONS ON TIME-SPACE COMPLEXITY 

In order to compare our algorithms with the classical DTW algorithms from the 
point of view of time space complexity we will restrict the discussion to the 
problem of isolated word recognition - the discussion relative to the connected 
word recognition would be similar -
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Let N be the number of references, I the length of the test utterance, 
J the mean leng-th of the references, S the number of bytes necessary to 
represent a word of data of integer type in the machine used, a the ratio 
~f the time necessary to carry out a floating point division to the time 
needed to evaluate a local distance. For the standard DTW algorithm, in the 
case of a full search of the optimal path in the matching N * I * J local dis
tances must be evaluated and N * J *S bytes of data are necessary to store 
the accumulated distances. In the case of our algorithm N * I * J (1 + 3a) "local 
distances" must be evaluated and 2 * N * J * S bytes of data are necessary to 
store both the accumulated distances and the lengths of the partial optimal 
path ending at each point. From the expression of the number of local distances 
for our algorithm, we see that the computational effort necessary to implement 
our algorithm depends critically on the parameter a. If the time necessary 
for calculating a floating point division is greater or equal than the time 
necessary for evaluating a local distance - as it is the case in a general 
computer- the computational effort is multiplied by a factor of 4 or more. 
It is clear that our algorithm needs a special hardware configuration inclu
ding an array processor or a digital signal processor. The comparison of the 
expressions giving the space of the data memory both for the two algorithms 
shows that our algorithm needs twice as much memory space as the standard al
gorithm. This is the minimum memory space requirement imposed by our method 
and there is no way of compression it further. 

VI. SOME PRELIMINARY EXPERIMENTAL RESULTS ON WORD RECOGNITION 

We have implemented on a mini-computer, MITRA 125, the algorithm we have called 
previously UESLS using the symmetric Sakoe and Chiba local constraint. The 
speech signal was analysed by a 16 chanel vocoder with a sampling frequency 
of 50 Hz. The vocabulary of words considered was the ten french digits. The 
mismatch in duration, tm , was a parameter of the algorithm. Only one refe
rence was used for each word. Each word was pronounced 20 times. For 
tm = 0 ms we get 3 % of error rate and for tm = 60 ms we get 1 % of error 
rate. Consequently an increase in performance seems to appear when the boundary 
conditions are relaxed. But these experiments are not sufficient to give a final 
judgment on the performance of the method employed. For a more precise evalua
tion of the accuracy of the new class of DTW algorithms, both for isolated and 
connected word recognition, proposed in this paper, extensive experiments are 
under course in our research group. Detailed results will be given in a compa
nion paper. 

VII. CONCLUSION 

In this paper we have presented a new formulation of the DTW recursive relations 
both for word recognition and connected word recognition. The new recursive re
lations presented are able to take into account possible warping path length 
variation which may result either from a relaxation of the boundary conditions 
or from the assignment of arbitrary weighting coefficients to the arcs of the 
local constraint employed. Preliminary experiments for word recognition indi
cate an improvment in performance in the case of the ten frech digit vocabulary 
when the boundary conditions are relaxed. 
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ABSTRACT 

In this study, a computationally efficient speaker independent 

isolated word recognition system for Turkish language is desig

ned and implemented. The approach used is a combination of 

whole-word matching techniques with segmentation into phonetic 

units before classification. Linear Predictive Coding (LPC) 

coefficients for an eight-pole model of the short-time signal 

are used as feature vectors. Computational costs are reduced 

by a two-step classification strategy where unlikely words are 

eliminated in the first step by comparing only the first sylla

ble. The Dynamic Time Warping (DTW) method is used in compari

sons at both levels. 

CPU time spent for word comparisons is reduced by about 40% 

compared to the time that has to be spent for a one-step whole

word classification without degrading the system performance. 

I. INTRODUCTION 

Many isolated word recognition systems for single speaker case 

process the incoming speech in real time. If speaker inde

pendence is also a desired feature, the extra processing that 

is needed may raise the computational costs significantly. 

This is caused by the fact that higher numbers of features and 
higher numbers of training samples need to be used in the 

classification to compensate for the variations amonq different 
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speakers' speech. 

In the whole-word template matching classification approach this 

means that usually more than one template per word is needed for 

comparisons. 

This study makes use of a two-step classification strategy to 

reduce the number of whole-word comparisons, thus obtaining sig

nificant reduction in computational costs. The vocabulary is 

segmented into groups of dissimilar words. In the first step, a 

candidate from each group is selected by considering only the 

first syllable, thus avoiding the comparison cost for the rest of 

the word. In the second step, selected candidates which are few 

in number are compared with the unknown word as a whole to select 

the most likely one. 

The block diagram for the system is shown in Figure 1. It has 

an 18-word vocabulary consistinq of Turkish digits and arithmetic 

operators like plus, equal, etc. The speech signal is filtered by 

an analog low-pass filter to eliminate high-frequency noise and to 

prevent aliasing effects before it is digitized and stored in an 

LSI 11/2 microcomputer. The system software can mainly be divided 

into learning and recognition phases, as will be discussed in the 

following sections. 

II. FEATURE EXTRACTION AND PATTERN SIMILARITY 

Many different features are used for recognizing isolated words. 

Among them are short-time spectrum, cepstrum, LPC coefficients, 

etc. The LPC method, which was selected to be used in this work, 

is presently a widely used technique because it provides accurate 

estimates for spectral features of most sounds in a computationally 

feasible amount of processing time(l). LPC analysis relies on a 

model of the digitized speech signal sn where it can be approximated 

by a linear combination of p past samples as follows: 

p 

s = L ak s k 
n k=l n-

(1) 
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This corresponds to a speech generation mechanism modeled as a 

p-pole digital filter whose input is a periodic train of impulses 

for voiced speech and a random sequence of noise for unvoiced 

speech. The filter is time invariant only for a short interval 

of time (about 30 msec) due to the vocal-tract properties. Hence 

the signal for a whole word is divided into a number of frames. 

Here, the frame width is selected to be 40 msecs, succesive frames 

overlapping by two thirds to compansate with the filtering problems 

at the sides. 

of each frame. 

application. 

The p parameters a l ,a2 , ... ,ap represent the properties 

p = 8 is found to be good enough for this particular 

Fig.l. shows that the digitized speech signal is first preprocessed 

for pre-emphasizing the high-frequency components and detecting the 

endpoints. The endpoint detection algorithm makes use of the zero 

crossing rate and energy measures, which is described in (2). After 

the preprocessing operations, the LPC parameters for each frame are 

estimated using the autocorrelation method of linear prediction{2,3). 

Several distance measures between the two words which are represented 

by a sequence of LPC parameters have been proposed in the literature. 

Initially a distance measure between the two compared frames of two 

corresponding words has to be defined. Here the Itakura distance(4) 

is used, which is mainly the log ratio of the normalized autocorre

lation functions of the LPC coefficients of test and learning samples. 

Once the distance measure between the two corresponding frames has 

been determined, a time warping of two words to achieve an optimum 

match is employed. Main problems arise due to the fact that the 

number of frames in two compared words may not be the same, in addi

tion to the problem that repetitions of the same word might have 

different durations for the same phonetic units. These problems 

were tackled by Dynamic Time Warping(DTW) alignment, which nonline

arly shifts the frames to get a best match between the two words 

or other compared units (S). An optimum solution is found by 

dynamic programming methods and allows different-length samples. 

III. CLUSTERING 

The last step in learning is setting a classification rule which 
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makes use of reference patterns. The Nearest-Neighbor Rule clas

sifies the unknown sample as belonging to the category closest 

reference pattern belongs to. However, computational costs in

volved in comparisons and storage make it impossible to use this 

classifier without any modification for most of the applications, 

as it is the case in word recognition problems. Only a few rep

resentative ones between the learning samples of each category 

is selected. These patterns are called templates. In the speaker 

independent recognition problem it is desired that the number of 

templates be more than one for each word to obtain acceptable 

results. To select the representative templates, possible clus

ters of feature vectors are selected. Here, a clustering algo

rithm which is proposed by(6) is used. The original algorithm 

creates a variable number of templates according to the structure 

inherent in the training set. The total number of clusters need 

not be known or specified a priori. 

For determining the first template, a single pattern is selected 

from all the replications of that word in such a way that the 

maximum distance to any other sample is minimum. This point is 

called the minimax center. After the first template is selected, 

a cluster is formed around this point by including all the pOints 

that are closer to it than a predefined threshold. The samples 

which are not covered by the first cluster are considered for the 

determination of the second template and the second cluster, using 

the same procedure. The procedure can be repeated until all the 

words in the same class are covered. 

IV. SEQUENTIAL CLASSIFICATION 

One way to reduce the computational costs for the comparisons is 

to use a smaller number of frames. Obviously, this would cause 

some loss of information and an increase in the error rate. 

However, if the classl.fication discriminates between distant 

(dissinlilar) wordS, only a portion of the complete feature set 

might be used with acceptable results. The idea utilised here 

is as follows: Divide the words in the vocabulary into a number 
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GR-l GR-2 GR-3 GR-4 GR-5 

SIFIRlsaf'ar/ ALTI la 1 te/ IK! /iki/ B!R /bir/ DtiRT /dart/ 

YEO! /jedi/ SEK!Z/sekiz/ OOKUZ/dokuz/ til; /yt / BE~ /bef / 
NOKTA/nokta/ TOPLA/topliij E~!T /e/it/ Al; /a t// l;ARP /t/arp/ 

KAPA/kapa / l;IKAR/t/akar/ BOL /b c:.l/ 

Table 1: Grouping of the Turkish words in the vocabulary. 

This approach differs from other sequential methods in the sense 

that dissimilar words, rather than similar are grouped together. 

Once advantage of this is that it might give better results when 

the vocabulary allows a uniform distribution of reference templa

tes over the pattern space, rather than forming distinct clusters. 

The grouping of words in Table 1 is performed by making use of 

the confusion matrices obtained by the experiments performed on a 

one-step classification process in a previous study(2). For example 

YEO!,SEK!Z and ES!T are found to be confused mostly so they fall in 

different groups. 

Here, one concern in determining the number of groups is to keep 

it small enough to allow a considerable reduction is computational 

cost but large enough so that the system performance is not degra

ded. This is performed heuristically here. Other factors that 

vocabulary 

/j\~ 

Recognized 

Word 

} STEP 1 

STEP 2 
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affect the groupings are the syllabic properties of the Turkish 

language. Words that are in the same group have the same number 

of syllables. Also, it was shown in previous (7,8) that segmenta

tion of a word into its syllables is not as difficult as in many 

other languages. This fact is utilised in forming the following 

two-step classification rule (Fig. 2): A candidate is selected 

from each group. The frames that are taken into account in this 

selection approximately correspond to the first syllable of each 

word. The syllabic segmentation is performed by making use of 

energy values during the endpoint detection procedure. The rea

son for selecting the first syllable arises from the fact that 

the average duration of the first vowel, and hence the first 

syllable is shorter than the following ones in general for the 

Turkish language. Also, plosives such as /p/ and /t/, which 

appear at the end of the words in general generate bursts of 

energy, which result in peaks and causes a confusion of these 

sounds with vowels. Considering only the beginning of a word 

will avoid this problem. 

The candidate selection from each group is performed by dynami

cally time-warping the selected frames of the words as discussed 

above. Once this has been done, the final classification is 

performed among the selected candidates, this time making full 

use of all the frames, using DTW matching. 

v. RESULTS AND CONCLUSION 

The word templates were generated by 16 different speakers (8 

males and 8 females of different ages). About 300 words genera

ted by other speakers were used for testing. In an earlier study 

(2) using the single·-step dynamic time warping approach with two 

templates per word, a recognition rate of 80% was obtained. The 

approach discussed in the previous sections allowed for an impro

vement of 40% in recognition time while keeping the recognition 

rate at the same level. The earlier experiments showed that 

using three templates rather than two improves the recognition 

rate considerably (to approximately 87%), so that the savings 



www.manaraa.com

426 

REFERENCES 

(1) Makhoul,J., 'Linear Prediction: A Tutorial Review', Proc. 

IEEE, 63, 1975, pp.583-587 

(2) Unal,F., 'A Speaker Independent Isolated Turkish Word Recog

nition System', M.S. Thesis, METU, Ankara, Turkey, 1983. 

(3) Rabiner,L.R., Schafer,R.W., 'Digital Processing of Speech 

Signals', Prentice-Hall, 1978. 

(4) Itakura,F., 'Minimum Prediction Residual Principle Applied 

to Speech Recognition', IEEE Trans. Acoust. Speech and 

Signal Processing, Vol. ASSP-23, 1975, pp. 67-72 

(5) Sakoe,H., Chiba,S., 'Dynamic Programming Algorithm Optimiza

tion for Spoken Word Recognition', IEEE Trans. on Acoust. 

Speech and Signal Processing, Vol.ASSP-26, 1978, pp. 43-49. 

(6) Rabiner,L.R., Wilpon,J.G., 'Considerations in Applying Clus

tering Techniques to Speaker Independent Word Recognition', 

J. Acoust. Soc. Am. 1979, pp. 663-673 

(7) Toreci,E., 'Statistical Investigations on the Turkish Langu

age Using Digital Computers', M.S. Thesis, METU, Ankara, 

Turkey, 1974 

(8) Ozmen,H., 'A Microcomputer Based System for the Recognition 

of Spoken Turkish Digits', M.S. Thesis, METU, Ankara, Turkey, 

1981. 



www.manaraa.com

A GENERAL FUZZY-PARSING SCHEME FOR SPEECH RECOGNITION. 

Enrique Vidal * 
Francisco Casacuberta * 

Emilio Sanchis * 
Jose M. Benedi ** 

(*) CENTRO DE INFORMATICA 
(**) DEP. ELECtRONICA E INFORMATICA FAC. FISICAS 

UNIVERSIDAD DE VALENCIA 
SPAIN 

ABSTRACT. 

In this paper a Speech Recognition Methodology is proposed 

which is based on the general assumption of "fuzzyness" of both 

speech-data and 

there are other 

the proposed 

knowledge-sources. Besides this general principle, 

fundamental assumptions which are also the bases of 

methodology: "Modularity" in the knowledge 

organization, "Homogeneity" in the representation of data and 

knowledge, "Passiveness" of the "understanding flow" (no backtraking 

or feedback), and "Parallelism" in the recognition activity, 

The proposed methodology is formally presented, and algorithms 
to develop actual systems on general pourpose hardware are given. 

An implementation example as well as the results obtained with it 

are also presented. 

1.- INTRODUCTION. 

Automatic Speech Recognition (like other human-like perceptive 
and cognitive problems aimed at being solved by digital computers) 
has proved to be a dificult task. The main dimensions of the 
dificulty are variability and noise of data and ambiguity and 

uncertainty of knowledge; in fact, all these are of a nature which 

is very far from the exact-like principles under which all modern 

Von-Newman-machine based computers work. Most implementations of 

Speech Recognition Systems are, in reality, computer-simulated 

mathematical models which aim at accounting for the inexact nature 

of the problem, Among the theories which have been adopted as 

background for modeling inexactness is the Fuzzy-Sets Theory. It has 
been used in several Artificial Inteligence areas (12) and, in 

NATO AS! Series, VoL F16 
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particular, it has proved to be a consitent mathematical sUPPort for 

quite different problems in Speech Recognition (1)(2)(3)(13)(14). 

The work presented in this paper is based on the above 
introduced general assumption of fuzzyness of both knowledge and 

data, and uses the Fuzzy-Sets Theory as the primary frame-work for 
developping a general model of perception and cognition with direct 
application to Speech Recognition. 

Besides the fuzzyness principle there are four other 
fundamental assumptions under which the presented model is being 
developed: namely modularity, homogeneity, pasiveness and 
paralelism. "Modularity" stands for the organization of the 
knowledge, which is assumed to be structured into levels of 
understanding (acoustic, phonetic, lexical, etc.). The "Homogeneity" 
principle assumes knowledge and data to be uniformly represented at 
all the levels. "Passiveness" refers to the "understanding flow" 
which is thought to progress just as a parsimonious bottom-up 
systolic flow, without backtracking or feedback. The "Parallelism" 
principle, represents the way in which understanding activity is 
performed; both inter-level (all levels can work concurrently) and 
intra-level (several elements in each level can hold a parallel 
activity, cooperating to the in-level understanding process). 

All these ideas agree closely with certain psycho-cognitive 
"connectionist" theories more or less based on speculative 
assumptions on the actual neuronal hardware (4) (5) (6). In these 
theories, it is considered that all encodings of importance are in 
terms of relative strengths of synaptic connections, and individual 
neurons do not transmit large ammounts of symbolic information; 
rather they communicate with each-other in a simple way. Complex 
concepts are thought to be held by an appropiate interconection 
scheme between several elemental units, and the apparent rule-based 
nature of cognition is considered as an illusion based on 
statistical properties of mass neuronal interactions. 

The cognitive model presented in this paper, like all those 
related to "connectionist" theories (and many other models of speech 
understanding), are especially well suited for implementing with 
massively parallel machine architectures which are not 
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model introduced, algorithms have been developped which can run 

satisfactorily on present general-pourpose (mini) computers, and 

there seem to be many potential (and actual) applications which can 

run on general pourpose hardware. 

Under a more classical perspective the work presented in this 

paper can be viewed as a "pasive" system with the different 

knowledge sources structured into levels. In general, this kind of 

system produces important information reductions at each level, by 

"interpreting" the data coming from the lower level(s). This 
information reduction (which is very interesting from a 

computational point of view) is the main cause of a degradation in 

results produced by the presence of ambiguity and noise, which makes 

it impossible to get the "clean" interpretations usually aimed for 

at each level. The alternative proposed renounces explicitly to 

handle "clean" data, and aims to reduce the degradation by 

minimizing the loss of information associated with the 

interpretation process at each level. Fig 1.1. shows an intuitive 
illustration of the proposed methodology. Level-O is a special level 
which obtains a fuzzy symbolic description of the parametric 

representation of speech. Level-1 fuzzy-interprets this 

fuzzy-symbolic description in terms of (broad) phonetic categories. 

This fuzzy-interpretation is processed in its turn by Level-2 which 

fuzzy-interprets it in terms of lexical categories. The process 

continues in a similar manner at all the levels, "focalizing" the 
incoming data into the most likely interpretations in terms of the 
categories associated with each level, but without significative 

dropping of information about low-scored interpretations which will 
therefore be available for the higher levels if there is low 
compatibility of the most likely data with the corresponding 
knowledge sources. 

For most applications, the knowledge associated with each level 

can be homogeneously represented by fuzzy finite-state networks, and 

the same fuzzy-parsing scheme can be (concurrently) applied to all 

levels. 

2.- THEORY AND ALGORITHMS. 

In this section we will deal with a formal presentation of the 
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et.c. 

(BROAD) 'PHONET I C LABEL I NG 

Ir--~~~-;'~---il' 
I I 

I FUZZY SYMBOLIC DESCRI'PTION I 
~ ____________ ~ ____________ J 

'PARAMTRIC S'PEECH 

fig 1.1. !iJ/tlleveJ fuzzy-InterpretatIon process. 

PARRI1ETERS, CONT IN_NODE, STARTING_SCORE, STRTE_ THD, RECOGN_ THD, 
CONTINUITY_ THD, NON_CONTINUITY_PENRL TY. 

INITIAL IZRTION, 

Nake all current_state scores = 0, 
Nake all next_state scores = 0, 
Nake Initial_state score = STARTING_SCORE, 
Nake utterance_time = 0, 

RECURSION, 

reReat 
Input the current_fuzzy_label, 
for all currenCstates with score) STRTE_ THD, 

find all nexCstates, 
for each next_state, 

evaluate transition_evidence = 
= l(currenCstate,currentJuzzy_label,nexCstate), 

J.L nexCstate score ( current_state score a 
transition_evidence 

then make nexCstate score = current state score D 

end for, 
end for, 
for all next_states, 

trans I t I on_ ev I dence, 

.1f.. next_state score - current_state score ( CONTINUITY_ THD 
then decrement nexCstate score by NON_CONTINUITY]ENRL TY, 
J1. nexCsatate score ( STRTE_ THD then make this score = 0, 

end for, --
make all current_state scores = next_state scores, 
{prunnlng may be necesary for large networks} 
for all finaL states with score) RECOGN_ THD, 

output these states and their scores as the fuzzy set 
of recognized categories, 

end for, 
(decimation can be applied for saving resources In next level} 
.11 CONTIN_NODE then make Inlt/aLstate score = STARTING_SCORE, 
Increment utterance_time by the time_unit, 

unt il ut terance_ t I me I s exhausted. 

fig 2.2. The fuzzy-parsing aJgoritlw. 
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As introduced in first section, each level accepts a 

of a certain class of fuzzy-symbols produced by the lower 

sequence 

level(s) , 

and outputs another sequence of "fuzzy-symbols" corresponding to the 

associated symbol repertory. All these "fuzzy-symbols" are modeled 
as fuzzy subsets over the output alphabet corresponding to the 

categories associated with each level. 

The output sequences of fuzzy-symbols are produced at all the 

levels, by a general "fuzzy-inteq~retetion Erocess" and the 

knowledge needed for this interpretation is assumed to be 

represented by fuzzy finite-state networks. The exception is the 

lowest level, which must extract its corresponding sequence by means 

of a different "fuzzy-description Erocess" (14) applied to a 

parametric representation of speech. 

Let 't' be a finite alphabet, and G the set of all fuzzy subsets 

over~ We define af-fuzzy-finite state machine as a five-tuple A 

where: 
1) Q is a finite set of states. 

2) ql e. Q is the initial state. 

3) F ~Q is the set of final states. 

4) B: Q x Q~G are the arcs with their confidence values. 

5) !: Q x G x Q ~ [0, 1] defined as: 

The fuzzy relation I aims at representing the "transition 

evidences" by considering the contribution of both the fuzziness of 
data ]2, and knowledge li. The simbol ".6" is a generic composition 
operator which (depending on the requirements) can accept several 
different definitions: 

- the max-min function: 

D 6E(q. ,q,> = V \II P (e) I\)l ( (e) 
..., ~ J Ve, J ~ E q. ,q . J 

~ J 

- a normalized Hamming distance: 
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Over! we can define a "configuration" 
Q, and a state qeQ is said to be "A-active" 
JlSS(q»A>O. A "move" between configurations 
function M: L x G ~ L, where L is the set 

£ as a fuzzy subset of 
in a configuration £ if 
can be defined as a 
of configurations over 

y q ~ Q 

where "a" is another generic composition operator. A simple 
definition of this operator is the min function; however, this 
definition is not adequate to describe the evolution of 
configurations in all the cases, since it is too "local": that is, 
the configuration Qj at a given time is made to be only dependent on 
the last configuration QL and the present transition evidence 1. In 
order to enable more "global" operator definitions, a new concept 
must be introduced: 

A trellis XCI. over! for an input string a f; a* (a=~ .. ~J ".£/41) is 
defined recursively as the sequence of configurations of !: 

{ (q,.P (q» / Jl (q) = 
go ~ 

C = M(C,D ) 
"'k+1 "'k -k+1 

k=0,1, ••• ,lal-1 

In this case other alternative formulations for the operator 
can be given: 

* The "global" running average: 
k u (q/) + T(q,D ,q/) 
·-C~ - "'k+1 

U (q/) C T(q D q') = -..;...---------
r£k - '-k+1' k+1 

* The "time decaying" windowed local average: 00 

u (q')CT(q,D ,q/) =c<.(p (q/) +l'T(q D q'». 0<0<.<1· 'If = 11 I: 0<." 
r£1c. - "k+1 ~ - '-k+1' , , n=1 

In most cases it is of great importance to constrain the set of 
~active states to those which receive continuous evidence 
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modification can be applied to the definition of M: 

~j gj ~1. 1 
p (q) if )l (q) -p (q) ) f. 

Jl (q)-y/ if P (q)-p (q) 'E and p (q)-'l?A 
~j ~j gi. ~j 

o otherwise. 

where P,.( q) is the above defined membership funcion, and ~ and 
-J 

7are a "continuity-threshold" and a "non-continuity-penalty" 

respectively. 

With this formulation, the trellis for a given input string can 

be interpreted as the time evolution of activity of states and the 

concept of~active states can be used as a pruning criterium for 

implementing the parsing algorithms. Depending on the definition of 

the "move" function M, the set ofk-active states can be reduced to 
a small subset of Q which changes dynamically with the evolution of 

configurations in the trellis. As will be shown later, this feature 

allows the implementation of efficient fuzzy-parsing algorithms over 

sequential general-pourpose hardware. It is worth-noting that the 

pruning methods introduced here have nothing to do with the well 

known beam-search technique used for parsing in large finite-state 

networks like Harpy (10); morever, this technique could be further 

applied over the methods presented in this paper. 

In some cases it may be of interes to know how well a given 

input string is accepted by the Fuzzy-Automata!i in these cases we 
can say that a e cfis'\-recognized by A, if the configuration £10.1 of 
X~ contains at least one final state q e F such that PC (q»~ 

-1--1 

The fuzzy parsing scheme here presented can be easily extended 
for the aimed fuzzy-interpretation process. Let Z be a fuzzy 

translation scheme defined as the triplet Z=(+,~,H) where: 
1) ~ is a fuzzy finite state machine. 

2) ~ is an output alphabet. 

3) H : Q ~t·. 

H represents the asignement of at most one string over the 
output alphabet for each state of A. 

Let £~be the finite language defined by H, that is 
~7.= {b/b,4>·, 3qEQ: H(q)=b}. If atG (a=Pl n, ••• DII.I), and the 
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¥q E. Q , 1<i<lal 

In most cases, this translation scheme can be simplified by 
modelling the network to have one final state per considered 
category at the corresponding level. In this case the output 
alphabet can be mapped with these categories, the langage is 
reduced to single-simbol strings, and (relaxing the notation) the 
definition of H can be simplified to: H : F ~~, where F is the 
set of final states of A-

Fig 2.1 summarizes the fuzzy interpretation process introduced 
above: for a sequence of fuzzy subsets over a finite input alphabet 
~, the interpretetion process produces another sequence of fuzzy 
subsets over another finite output alphabet" Although the length of 
both sequences is the same, in most cases the output categories can 
be described with a much coarser time resolution than the input ones 
(e.g. a 0.05 sec. resolution for phonemic-labeling versus 0.5 sec. 
for word-labeling). To take advantage of this feature, subsampling 
can be used for saving resources at the next level. 

The Fuzzy-parsing and translation scheme introduced above, is 
implicitly associated with an abstract massively parallel machine. 
Though much recent research effort is being spent on such a kind of 
parallel hardware (8) (9), at present, only more or less sequential 
general-pourpose hardware is practically available. The algorithm 
developed for an efficient implementation of the methods presented 
in this section on general-pourpose computers (fig. 2.2) is based on 
the Viterbi algorithm (11), from which we have taken the structure 
of the trellis. The main differences in our algorithm are: 1) The 
weights of the arcs, which here represent the transition evidences 
I, and 2) The score accumulation method, which is based on the 
definitions of the "move" function M between configurations. The 
latter (which is the main contribution to the aimed fuzzy-parsing 
task) leads to a formalized pruning method which can be used both 
for memory and processor-time saving, and is the base of the real 
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efficiency of the algorithm. 

3.- THE LEVEL STRUCTURE: CURRENT DEVELOPEMENTS. 

The fuzzy interpretation process introduced in last section can 

be applied to Automatic Speech Recognition in two basic ways: 1) 

Encoding all the knowledge into a single network which interprets 

the speech data directly in terms of syntactic-semantic categories, 

or 2) Structuring the knowledge into levels of understanding, and 

modeling each level as a local small network. The first alternative 

would lead to a large network system with all its well known 

advantages and drowbacks. The second alternative, which is the one 
adopted in this work, has the attractive features of modularity and 

(potential) inter-level parallelism, without dropping the general 

principles of passiveness and homogeneous representation of 

knowledge and data. 

Structuring knowledge into levels of understanding is not a 

straight-forword task, and usually responds more to implementational 

reasons then to fundamental assumptions. Some of the levels which 
have been assumed in modern Speech Understanding Systems are the 

following: microphonetic, pseudophonetic, phonetic, diphonetic, 

pseudosyllabic, syllabic, lexical, syntactic, semantic and 

pragmatic. Not all the systems have used all the levels, rather, a 

subset of them has been implemented in each system. In the work 

presented in this paper some different structures will be suggested; 
however, in order to make a preliminary test of the theoretical 
assumptions above presented, only a very simple example has been 
implemented. In this implementation just three levels 

(microphonetic, lexical and syntactic-semantic) are assumed, and a 
very crude parametric representation of speech is used; this permits 
an easy test of different issues without spending too much effort in 

implementational aspects. In the rest of this section some details 

and results of this implementation will be given and different 

alternatives that arise will be discussed. 

3.1.- Parameter extraction. 

This is the first step in all Speech Recognition Systems. In 
that presented here, only three elemental short-time parameters have 
been used: signal average-magnitude (Amplitude) (A), Signal 
Zero-Crossing (Z), and signal-derivative zero-crossing (D). These 
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parameters are extracted through a non-overlapping 15 ms. 

rectangular window, using a previously estimated threshold to avoid 

fluctuations in Z and D due to environnemental noise, and 

normalizing A to the most stressed vowel contained in the signal 

input buffer. This crude representation has been adopted for two 

main reasons: computation simplicity, which allows easy and 

efficient implementation on general pourpose hardware, and low 

spectral descriptive power, which is a challenge for the recognition 

methods, which must then work mainly on the basis of accurate 

temporal feature description of the acoustic patterns. As these 

temporal features of speech data respond basically to general 

phonological constraints, multispeaker operation is expected to be 

achieved easily. The drawbacks of this kind of representation are 

obvious, and for many real-applications the use of a more powerfull 

spectral representation would be necessary. 

3.2.- Fuzzy-symbolic description. 

The first task after a parametric representation of speech is 

obtained, is to derive an elemental Fuzzy-symbolic description of 
this representation. This description can be obtained by the methods 

introduced in (14). Each parameter must be divided into (several) 
overlapping intervals, and each interval must be assigned both a 
name and a membership function. The number of intervals, and the 
shapes of the membership functions, depends on the parameters to be 
described and also on the categories which must be derived from this 

description in next level. Fig 3.1 shows these functions and names 
for each of the three parameters used in the example presented. 

These functions have been obtained by hand-smoothing-and-merging the 

results of the statistical distributions over the three parameters 

of the different microphonetic categories to be used. 

3.3.- Fuzzy microphonetic labeling. 

Once a fuzzy-symbolic description is available, the general 

fuzzy-interpretation process presented in section 2 can be applied 
to interpret this description in terms of the categories wanted. In 
the example presented a set of broad-phonetic classes, which 
corresponds to the phonetic-labels to be assigned to each frame, is 
associated with the first level. 
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~J itude Zero-crossing Deriv. Zero-crossing. 

Fig 3.1. I'1etIbership ftnCtions for the fuzzy-description of pEr8llleters alzld. 

I u N s z T 

Fig 3.2. Broad-phonetic categories network. 

(evidences of the arcs are represented by the dlferent dashing of Jines). 
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The broad-phonetic categories and symbols are the following: 

"I": Front-vowel (Iii, lei, lal, some segments of Ill). 
"U": Back-vowel (lui, 101). 

"N": Weak-sonorant (/n/, Iml, Iq/, 11.1, some segments of Ill, 
most segments of voiced stops). 

"S": Strong-fricative (lsi, hissing segments of Icl). 

"Z" : Weak-fricative (lSI, If I, lxi, some segments of IPI). 

"T": Silence (lpl, Itl, Ikl, some voiced stops, stop segments 
of Icl) • 

Fig 3.2. shows the network used to obtain an interpretation of 
each frame in terms of the categories considered above. It must be 
pointed-out that the interpretation process at this level is 
"parameter-indexed" in opposition to the following levels 
the process is "time-indexed". The general operators used 
level are: 

A= max-min function; 0= min function. 

in which 
in this 

3.4 The lexical level: isolated and connected word recognition. 

The output of the micro-phonetic-labeling level is a time 
series of fuzzy-broad-phonetic labels. From this series, several 
phonetic-like or syllabic-like intrerpretations are possible. 
However, for moderate lexical sizes (as considered in the example), 
it is also possible to achieve a direct lexical categorizing without 
intermediate levels. Fig. 3.3 shows the network used for the spanish 
digits lexicon. 

The fuzzy lexical access obtained at this level, can be used as 
an input to higher levels. Nevertheless, there are also applications 
in which the results of this level can be used directly: namely, 
isolated and connected word recognition (IWR, CWR). For IWR, the 
silence anterior and posterior to the words can be modelled as part 
of the network (dashed-line final states and T-arc in initial state 
of fig. 3.3), and the "systolic-like" progression of the 
configurations is restricted to just one "systole" per expected 
word; that is, activity in the network is initiated just once, at 
the beginning of recognition by making~active the initial state at 
the initial time. The activity (score) of the final states at the 
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s T 

T a Tres (1) 
I] ---'T-~ Itres/ ___ T 

1f" U T"'~ 
U 27 -----4f!J Cuatro (4) 

---- T Ikuatrol 
~ IJno (1) 

- -.:;' IInol 

T 
T a 

~!"""--"",~(j) 

---~ S T IflUlJPeI 

~ T_~sels (6) 
lsels/ 

T~ T ,Lt. 
79 ---------@ 

Sle'" 0) 
u T Isletel 

T G _·_··--...lOi ... Cro (0) 
lBerol 

Fig 1.1. The spanish digits lexicon network. 
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be the word coresponding to the final state with greatest activity. 
For the IWR and CWR tasks the A operator is again the max-min 
function and the a operator can be implemented as either the 
"global running average" or as the "time-decaying" local average 
with delays (<<) greater than the maximum expected word duration. 
Since neither normalization nor upper-limit bounding are necesary 
for IWR, it is also posible in this case to implement D as a global 
accumulation (algebraic summation). 

The problem-of connected word recognition can be aproached via 
the metodology introduced in two ways. The first and easier way is 
to extend the lexical network by introducing a "nil" labeled arc 
from each final state (like the ones drown with continous lines in 
Fig. 3.3) to the initial state. This allows the one "systole" 
activity flow, to feed-back the initial state every time some 
final-state has becomekactive, thus efectivelly initiating a new 
"systole" of recognition activity_ The main and obvious drawback of 
this method is that recognition activity may be stopped if 
recognition fails for some word and no final-state becomes~active. 
The other way is to use the lexical network for continuously 
fuzzy-hypotesizing words in the continuous string of fuzzy 
microphonetic labels, producing an output string of fuzzy sets of 
recognized words ("multiword spotting"). This goal can be easily 
achieved by continuously making the initial state ~active, thus 

allowing a continuous flow of systolic recognition activity, which 
starts a new "systole" whenever some compatibility of the data with 
the network is found. The errors of the output string can be 
minimized at the next level if syntax is associated with the 
language. For the CWR problem, no syntax is available, but a 
pragmatic-like level can be implemented to take into account the 
durational constraints of the string of connected words (e.g. the 
"presence" of the spanish word Ikuatrol is not possible before 0.6 
sec. after the "presence" of any other word, etc.). 

Fig. 3.4 shows the complete description and interpretation 
process for the spanish connected words Inue,epuntooco/ 
("nine-point-eight"). The state-space evolution is also represented, 
showing the systolic-like progression of configurations and the 
time-decaying non-continuity-punished state deactivation feature. 

~ , 
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achieved by the recognition algorithm. 

3.5.- Syntactic-Semantic level in task-oriented applications. 

This level is usually assumed to have word-hipothesis as an 

input and must supply the phrase structure and the "corrected" words 

in the phrase as output. For many moderate-requirement applications 

the syntax of the language can be adequately modelled as a regular 

grammar or finite state network and, in most cases, the semantics 

(and/or pragmatics) of the task can also be embedded in the same 

network. 

The general fuzzy-interpretation process introduced so far can 

be directly applied at this level. In this case the networks are 

usually free of fuzzyness; that is, the fuzzy relation ! is 
simplified to the classical S-function of non-fuzzy automatas. 

However, one can take advantage of fuzzyness to obtain better 
descriptions of language syntaxes, in which certain phrase 

structures are less common than others. 

In most cases, the pragmatics of the task at hand allow the 
modelling of the network to group together, in one final state, all 

the semantically equivalent syntactic constructs, and to have one 
final state per semantic category. Fig. 3.5 shows a 
of this kind, corresponding to the protocol 

simple 
of a 

example 

small 
telephone-exchange. In this case the semantics of the langage can be 
reduced to the understanding of the thelephone-extension to be 
connected. In some other cases, the semantics of the application 
does not allow the above mentioned semantic categorizing. In those 

cases, the recognition algorithm presented in section 2 must be 

somewhat modified to maintain at each time and for each state, the 
trace of the partially accepted string pf words up to this time. At 

the end of the utterance, each final state will supply (besides its 

score or activity) the string of words which, having reached it, 

have matched the network best. 

Concernig the general operators used at this level, the max-min 
function for.4 and the global average or the global accumulation for 

cseem appropiate. As different utterances can easilly be isolated 
from each-other at the acoustic level (inter-phrase silences), it is 
adequate to select the "one systole" type recognition flow, which is 
achieved, as in IWR, by making the initial state}vactive just once 
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at the initial time. 

3.6.- The problem of building the networks. 

The networks associated with the different levels must be built 
on the basis of phonological/grammatical rules, and/or inferred from 
actual speech data. At some levels (syntactic-semantic) the network 
can be obtained from the language grammar in a straight-forward 
enough way; at other levels (microphone tic-labeling , phonetic, 
syllabic, lexical) the network can also be obtained by tqe use of 
phonological rules. However, in these cases, several problems arise 
which make the task difficult. The first problem is that the 
fuzzyness of the network must be accurately generated, due to the 
dependance of the performance of these levels on it. The second 
problem is that the rules needed to obtain the networks, are usually 
not very well known, and depend on the type of parameters and 
categories associated with the different levels. The third problem 
arises from the fact that, even if the rules needed were well known, 
there are always non-standard phonological phenomena which are not 

accounted for by the rules. 

One way of resolving the problem of network building is to 
proceed in two stages: 1) top-down rule-based arquetype 
network-building, and 2) bottom-up learning-based refinement of the 
built networks. 

The first stage can be performed by means of an expert-systems 
methodology. For the example presented in this paper, a production 
system has ben implemented which supplies the regular expressions 
needed to build the lexical-level arquetypical networks. These 
expressions are automatically obtained from the ortographic 
word-spelling, by applying a set of~OO phonological rules. These 
rules (which summarize expert-like knowledge abaut the problem) can 
be easilly updated, and so the problem of partial knowledge of the 
rules is somewhat minimized. 

The second learning-based refinement stage is much more 
difficult and, at present, is not performed automatically. 
Nevertheless, the importance of this stage is realized, and some 
research effort is being spent in order to develop good 
learning-based refinement methods. 
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4.- RESULTS AND DISCUSSION. 

The simple examples which are being implemented on the basis of 
the methods presented so far, show very encouraging performance 
results. At lexical level, recognition results are in the range of 
94-99% for the speakers involved in the process of inferring the 
different knowledge sources (membership functions, microphonetic 
network, lexical network), and are greater than 85% for the other 
speakers tried. These results are obtained in IWR experiments with 
three lexicons of similar complexity (spanish digits, catalan 
digits, telephone-exchange protocol), and with reconition times of 
the order of real time with a general pourpose 16 bits 0.7 mips 
minicomputer. For connected words, no reliable results are available 
at this moment, because the tests have been made with the same 
lexicon networks used for IWR, which should have been significantly 
modified for the CWR task. Nevertheless, the preliminary experiments 
show an adequate and efficient behaviour of the fuzzy-parsing 
algorithm, though the need of finer speech parameters and 
phonetic-labeling has been manifested for some of the lexicons 
tested. The need of an intermediate level between the micro-phonetic 
and lexical levels, which would alleviate the work of building the 
lexical networks, has also been detected. 

This level is being introduced in the next system 
implementation, aimed to support realistic applications. This 
implementation also incorporates a finer spectral parameter set, as 
well as a more complete phonetic repertory at the microphonetic 
level. The intermediate level has diphones as output chategories and 
so, the lexical networks will be built (from the ortographic 
word-spelling) in terms of diphones. One of the conveniences of the 
introduction of this level is that the set of rules through which 
the lexical networks must be built, are much better known than the 
phonological rules at present required for the microphone tic-based 
lexical nets. All the problems of partial knowledge of rules and 
learning-based network-refinements are thus shifted one level 
but with the advantage that the diphonetic level network has 
correctly built just once, while the lexical nets 

down, 
to be 

are 
application-dependent and must then be able to be changed easily. 

Other issues which have arisen through the development of the 
model introduced here, and which are currently under investigation 
are: 1) the need of a learning method, able to carry-out the network 
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refinement procedurej and 2) the extension of the fuzzy-parsing 
scheme with an "inhibitory" mechanism, which has been found to be 
necessary for accurate modeling of durational constraints, and is 
thought to lead to improved results in all the levels. 
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INTRODUCTION 

To build a bridge it is helpful to know something about the physics of 

stress and vibration, about materials science, and so on. To cure sickness, it is 

helpful to know something about the nature and causes of disease, i.e., microbes, 

metabolism, etc. This is not to say that it is impossible to build bridges and cure 

sickness without such knowledge. Indeed, some bridges were built and some 

sicknesses cured centuries before anyone knew anything about the physical and 

physiological principles involved. However, it must be admitted that the bridges 

were modest, most sickness was not alleviated and successes in both areas owed 

more to trial and error or an intuitive understanding of the relevant principles 

than to any sort of systematic, scientific, knowledge. From the time that 

knowledge in these areas was put on a firm scientific basis, taking into account 

the factors underlying the behavior of materials and microbes, much more 

impressive bridges and cures were possible. 

Similarly, to automate the production and the recognition of speech, it will 

be helpful to know something about the structure of speech and language and 

about the processes used by humans to produce and understand speech. Again, 

it may be possible to achieve limited success in these practical areas without 

knowing very much about the nature of speech but if the history of bridge 

NATO AS! Series, VoL F16 
New Systems and Architectures for Automatic Speech 
Recognition and Synthesis, Edited by R. De Mori and C. y, Suen 
© Springer-Verlag Berlin Heidelberg 1985 
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building and medicine is any guide, progress should be greater once this 

knowledge is obtained and applied to the solutions of these problems. 

Although some information about the nature and behavior of speech has been 

accumulating for some 2300 years since the time of the Hindu grammarian Panini 

and the early Greek philosophers, it was only in the beginning of the 19th 

century that linguists had their first success in providing answers to some of the 

questions that had occupied them - answers which, I think it is safe to say, 

may properly be characterized as being "scientific", i.e., obtained with care and 

provided with rigorous empirical support. The question they answered was "how 

do languages evolve?", i.e., they were able for the first time to reconstruct the 

history of languages, especially their phonological history. Since that time a 

considerable treasure of data about changes in pronunciation has accumulated. 

Change in pronunciation over time, or Bound change, as it is usually called, 

manifests itself in many ways. Discrepancies between the pronunciation implied 

by a conservative orthography and the actual pronunciation, e.g., English laugh, 

pronounced [lmf],1 is an indication of sound change. Differences in the 

pronunciation of cognate words in different dialects or languages is another, for 

example, in the history of French the original Latin word cantuB changed to 

[tJantj and then to [Ja], the modern pronunciation. English borrowed this word 

from French when it had the intermediate form (at the time of the Norman 

invasion in 1066 A.D.), and has not changed it substantially since then; thus we 

have the current English pronunciation [tJmnt]. Variation in the phonetic form of 

1 The phonetic transcription used throughout this paper follow the principles of 
the International Phonetic Association as of 1979, except that retroflex consonants 
are indicated by a dot underneath the letter. The arrows '>' and '<' stand for 
'changes to' and 'comes from', respectively. Citation of cognate forms from sister 
dialects lack arrows because, strictly speaking, one is not derived from the other 
but both are derived from a common parent, not cited. In this case, however, it 
is assumed that the form on the left reflects the phonetic form of the parent 
language. Other expository simplifications have also been made, e.g., the citation 
of Classical Latin, instead of the more appropriate Vulgar Latin, as the origin of 
words in French and other Romance languages. 
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the same morpheme in different grammatical contexts is yet another example, e.g., 

the English words native, nature, and natural have the same stem in the 

different phonetic shapes [ne;tj, [ne;tf], and [nretf]' respectively. (For further 

examples, see Ohala, 1980, 1983a.) 

In this paper I suggest how this wealth of information might be harvested 

and put to use in automatic speech recognition (ASR) and in the synthesis of 

speech (SS). One motivation for doing this is that although there is relatively 

wide (but by no means universal) recognition of the applicability of many other 

areas of linguistics for tasks in automatic processing of speech and language, e.g., 

syntax, semantics, pragmatics, sociolinguistics, lexicography, morphology (see, e.g., 

Lea, 1980), there seems to be little awareness of the applicability of historical 

linguistics, especially historical phonology, to the same tasks. 

It is understandable that historical phonology would be overlooked in this 

domain. First, the documentation of language change is expressed in a rather 

obscure jargon, using an inconsistent notation, and based on an intricate set of 

(usually) unstated assumptions. It is therefore very difficult for the newcomer to 

penetrate this literature. Second, many of the speculations on the causes of 

sound change were such as would suggest that the phenomenon held little interest 

for ASR and SS. For example, some suggested that sounds change because 

speakers' vocal anatomy changes over time, because the climate or terrain affects 

speech, because infants with their immature vocal organs are incapable of 

pronouncing words in the same way as adults and some infantile pronunciations 

persevere, because speakers tend to adopt "easier" articulations or articulations 

which are more distinct and thus easier to hear, because speakers try to simplify 

or optimize their grammars, or because pronunciation is subject to the whims of 

fashion in the same way that styles of clothing or furniture are. 

Although there is little I can do about the first problem - the 

impenetrability of the historical phonological literature - the second problem I 

propose to deal with by offering a different account of the nature of sound 



www.manaraa.com

450 

change. Specifically, I propose that the majority2 of sound changes result from 

errors of transmission of pronounciation from one speaker to another. Most of 

these errors are perceptual. If this is accepted, then the relevance of a study of 

sound change to the tasks of ASR and SS is obvious: in the same way that 

destructive tests are of value in materials science, sound change, being a 

breakdown of normal speech behavior, can give us valuable clues about the 

structure of speech production and perception. Of course, these clues must 

always be followed up by systematic laboratory investigations. 

There are good reasons for rejecting the earlier theories of sound change 

which propose that it stems from factors specific to a given terrain, a given time, 

culture, etc. or that it is introduced willfully by speakers (Le., that it is at heart 

a teleological phenomenon). These reasons are the following: 

1. The majority of sound changes occur in virtually the same form in languages 

distant from each other in time, geography, family history, and structure 

(Ohala, 1974, 1983aj Hombert, Ohala, & Ewan, 1979). Examples will be 

provided below. 

2. The "seeds" of many such sound changes can be found in presentday speech. 

That is, laboratory study of a modern speaker of virtually any language 

which possesses the relevant sounds reveals the 8ame kind of variation (either 

randomly or conditioned by rate of speaking, the phonetic context, etc.) as is 

found in sound change. 

3. These "seeds" can, in most cases, be attributed to universal physical and 

physiological causes (or, in some cases, to universal psychological causes). 

2 I say 'majority' because there are changes in pronunciation due to such factors 
as spelling (e.g., English 80und with a final [d) even though its source, Norman 
French 8oun, had no [d)), and the regularization of grammatical paradigms (e.g., 
the past tense of English dream as dreamed [d~imdl, replacing the earlier irregular 

form dreamt [drcmptJ. 
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The implication of this is that universal "extralinguistic" factors exist which 

are responsible for variation in speech; some of these variations eventually get 

"fixed" or "fossilized" (in ways to be described below) and thus lead to sound 

change. 

The way this happens, I suggest, is similar to the way that noise invades 

electronically-transmitted signals, as schematized in Fig. 1. A message source 

sends a message, x, to an encoder which emits a signal x' which is an encoded 

x'+Y 
x 

MESSAGE 

DESTINATION 

MESSAGE 

DESTINATION 

Figure 1. Schematic representation of a transmission line used as an anologue of 

speech production and perception; see text. 

form of z. Added to the signal z', however, is noise, y. Usually communication 

engineers are concerned with noise added from the environment but to make the 

analogy applicable to the present case the noise arises from the workings of the 

encoder itself. The composite signal z' + y is received by a decoder which 

ideally must factor out the noise y and then translate the encoded signal \ x' back 

into the intended message x and deliver it to the message destination. If the 

decoder is not able to factor out the noise y from the composite signal, then the 

message sent to the message destination will be contaminated with this noise 

component (see the lower branch of Figure 1). 
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By the analogical connections I wish to draw, the message source and 

message destination are the brains of the speaker and listener, respectively. The 

encoder is the anatomical elements used to produce speech, including not only the 

peripheral anatomical structures such as lips, tongue, soft palate, and larynx, but 

also the underlying muscular, neuromuscular, and neurological structures which 

control them. It is these structures which, due to their inherent physical and 

physiological constraints, impose certain distortions on the intended speech signal. 

The decoder is the listener's auditory system, including higher-level neurological 

structures. (These have their own physical constraints which may also distort the 

signal they receive but this is not represented in the figure.) 

An example may clarify some of this. Consider a case where a speaker 

intends to produce the sequence /tju/. When encoded, Le., articulated, the stop 

frequently becomes slightly affricated to [tIju]. This occurs due to the physical 

constraint whereby the degree of turbulence and thus the amplitude of the noise 

spectrum increases as the channel through which airflow is forced becomes smaller. 

Glides and high, close, vowels provide the narrow channel which leads to 

increased turbulence. Normally the listeners are accustomed to such distortions 

(due to their long experience in listening to speech) and they factor out the 

inadvertent affrication, thus reconstructing the intended /tju/. However, if the 

listener fails to factor out this distortion, then the pronunciation is taken to be 

/Uju/ and this is the pronunciation the listener aims at when he/she produces 

this word. Originally the amplitude and duration of turbulence would vary 

continuously as a function of the peculiar aerodynamic conditions created by the 

sequence of stop + glide; after this change the turbulence (affrication) would be 

an invariable part of the pronunciation of the word. In fact, this very sound 

change is quite common. It is responsible for the dialectal variants in American 

English of [tjuzdi] and [t!uzdi] Tuesday, for the pronunciation [:ektJual] for actual 

(originally [:ektjual]) as well as many changes from Latin to French, e.g., forti a 

> force (i.e., [f:)({s]) and palatium > palais (where the final s was once 

pronounced). In the latter two cases we assume the sequence of sound changes 

[tj] > [tsJ > [sJ. 
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It must not be supposed that because the term 'distortion' is used to 

describe these physically-caused excrescences on the speech signal, and because the 

experienced listener is said to factor them out, that these perturbations are 

therefore completely ignored by the listener. On the contrary, the more we 

investigate the acoustic cues utilized by listeners, the more we find that they are 

able to take advantage of any acoustic details which show some 

greater-than-chance probability of being associated with given contrasts. In a 

somewhat similar way, although the characteristic "hum" of an automobile engine 

is not what the engineer designing the engine was intending to produce, this 

sound is still used by the experienced motorist to diagnose its malfunctions. 

These features are 'distortions' in speech in the sense that they are variable in 

their appearance and therefore listeners must learn not to incorporate them 

purposely in their own mental lexicons where the instructions for pronunciation 

are stored. 

The imporant aspect of this account of sound change is that the changes are 

non-purposeful (i.e., non-teleological). We may assume that speakers speak in a 

way which, as far as they know, conveys the pronunciation of words that is 

"standard" in the given speech community and conveys them in a way such that 

other listeners will be able to figure out the intended pronunciation. 

What has been given above is an account of what might best be called 

"mini-sound changes" because as described they would only apply to changes that 

occurred due to the misapprehension of a single listener about the pronunciation 

of a single word. To link this with the "maxi-sound changes" that linguists 

study, i.e., sound changes characteristic of whole linguistic communities or even 

whole languges and affecting typically a vast number of words with similar 

phonetic shape, requires in addition the following assumptions: 

1. That the listener's misapprehensions are not corrected. Although this type of 

misapprehension due to a failure in the error-correcting process is fairly 

common, most such errors eventually get corrected by' virtue of the listener 

usually having access to other sources of information about how words are 
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pronounced, e.g., other speakers, the orthography. Nevertheless, it seems safe 

to assume that some small fraction of such errors escape eventual correction. 

2. That the speech of the person who initiated the change serves as the model 

for other speakers' pronunciation. The extent to which a given speaker's 

speech is imitated by others depends on their social position, how much they 

meet other people, etc. Again, it seems safe to assume that situations will 

anse where a single speaker will influence the speech of a great many other 

speakers who will therefore copy and perpetuate any innovation this speaker 

may have initiated. 

3. That, optionally, the change which manifested itself on one word then 

spreads to other similar words in the vocabulary. How this would occur IS 

not precisely clear, although several hypothetical "scenarios" can be 

constructed (but will not be discussed here). 

It might seem that if sound changes are similar across languages and are due 

to universal physical and physiological factors, then languages should converge 

towards the same phonological shape. It is fair to say that the macro-structure 

of all human language is quite similar (e.g., all languages use stops, all languages' 

vowels are roughly equally distributed in the vowel space) but differ largely in 

their micro-structure (e.g., whether they permit consonant clusters or not). The 

reason for the variation is that there are so many degrees of freedom in the 

"design" of a vocal communication system that languages' phonologies can be 

modified and are modified by sound change - III numerous ways and still not 

converge. Likewise, although all living things are similar in being based on 

chemical processes involving carbon, oxygen, and hydrogen, nevertheless a great 

variety of different life forms, showing no tendency towards convergence, can be 

found III any given habitat even though the physical and environmental 

constraints are uniform. It sometimes happens that in the history of a given 

language, what one sound change creates, another destroys, and vice-versa. For 

example, in the evolution of Sanskrit into Prakrit, and its other descendants, 

almost all intervocalic consonant clusters were eliminated, see Table Ia (based on 
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data from Misra 1967). However, in Hindi, one of the modern descendants of 

Sanskrit, medial consonant clusters have re-appeared due to the action of a sound 

change which deleted the vowel [a] in certain environments, see Table Ib (from 

M. Ohala, 1983). Such cyclicity of phonological processes is not the rule in 

linguistic history but neither is it rare. 

TABLE 1 

A. The loss of Sanskrit medial consonant clusters in its linguistic descendants 

(data from Misra 1967; a macron above a vowel signifies it is long). 

Sanskrit Prakrit Hindi Translation ---

fuska 
h -kh dry > sukk a > su a 

karpura > kappura > kapur camphor 

asta-
h -th- (oblique plural) eight > att a > a 0 

karma- > karma- > kame (oblique plural) deed 

B. Creation of medial consonant clusters in Modern Hindi (data from M. Ohala 

1933). 

Stem Translation Inflected/Derived Translation -----
Form 

namek salt > namkin salty 

purab east > purbi Easterner 

sLsak to sob > sLski a sob 

To summarize: variations or distortions in the speech signal start out as 

phonetically dependent and potentially continuous. Then, due to the 

misapprehension of the listener these distortions become independent of the 

phonetic causation and they manifest themselves in an invariable way. 
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I will now list some of the clues a study of sound change provides us which 

may be of use in the tasks of ASR and SS. 

CLUE 1: The sources of variation in speech. 

The first clue provided us may seem obvious: 

Variation in speech may be due to two different causes: (a) the 

physically-caused variation arising from the physical constraints (inertial, 

aerodynamic, etc.) of the speech mechanism and (b) sound change. 

As mentioned, although basically similar (since the latter are drawn from the 

set comprised of the former), these will have different characters. The former 

will generally be a continuous function of phonetic context (rate of speaking, 

loudness, etc.). They will also be potentially universal in that, e.g., all sequences 

of /tj/ in any language will be subject to affrication if the It/'s and /j/,s are 

articulated in similar ways. Therefore the rules for implementing this type of 

variation in synthesized speech (to achieve greater naturalness) will have the form 

of equations referring to parameters which may vary continuously e.g., that in (1), 

from Lindblom (1963) which predicts the F2 value of a vowel, given the target 

F2 of the vowel (F2t t)' the F2 of the flanking consonants (F2 ), the arge cons 
duration of the vowel (t), and two constants (k,b). 

-bt 
(1) F2 = k(F2 - F2t t)' e + F2t t cons arge arge 

The same rules - perhaps with different constants - could be used in different 

languages. 

Variation due to sound change, however, will be discrete (the change is 

implemented or not - it would not have intermediate values) and might be a 

function of such non-phonetic factors as speaking style. The rule in (2) is an 

example; this involves the change in English of the vowel /<r/ to /a/ when it 

(2) <r -t a / --- Cr 
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appears before a cluster of consonant ('C' in (2)) + /~/, e.g., surprise as 

[sa"p~3I..zl or [sap~atzl. (The motivation for this rule will be discussed below.) 

Such rules, which reflect the action of sound changes, although found in numerous 

languages, will be language-, dialect-, and possibly speaker-specific. It might be 

imagined that it should be a simple matter to differentiate these two types of 

variation in speech but this is not the case. It may be easy to detect the action 

of sound change when variants occur in different languages, or different dialects 

but not necessarily when they occur within a given language in different 

grammatical or stylistic environments. Who can say whether the intrusive stops 

in words like warmth [w:)~mE.gl and strength [st~£!l!gl are physically caused or 

due to a sound change (see Ohala, 1981c)? Nevertheless, this is the kind of 

determination that must be made for optimal ASR and SS. 

CLUE 2: Secondary Cues. 

It is well known that many phonemic contrasts, although characterized by 

linguists as differing primarily by a single phonetic distinction, in actual fact show 

several phonetic differences. For example, in English the words pat and bat differ 

in the ways listed in Table 2. Presumably the more such features are included 

in synthetic speech, the more natural and the more intelligible it will be. 

Likewise, if these features can be detected it will enhance the success of a 

feature-based ASR effort. The problem is, how does one find out what these 

features are? A study of sound change can help. Many sound changes are of 

the type where a feature which was previously physically-caused and accessory to 

a sound is re-interpreted as a primary feature of the sound or sound sequence. 

A survey of the kind of re-interpretations which are possible for a given 

distinction will reveal what some of these accessory features are. For example, it 

is well documented that in the evolution from Middle Chinese to the pre-cursors 

of the modern Chinese languages, what was previously a contrast of voicing in 

initial stops changed into a tonal distinction on the following vowels. Table 3 

gives comparable data from dialects of Kammu, spoken in Laos (data from 

Lindell, Svantesson & Tayanin, 1976). 
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TABLE 2 

Some of the differences between the initial stops in pat and bat. 

pat 

c. 60 msec VOT 

short transitions 

higher burst intensity 

high falling FO 

on following vowel 

lower starting amplitude of 

of following vowel 

bat 

c. 0 msec VOT 

long transitions 

lower burst intensity 

level or low rising FO 

on following vowel 

higher starting amplitude 

of following vowel 

TABLE 3 

Data showing that tone in Northern Kammu corresponds to a voicing contrast in 

Southern Kammu (from Lindell et al. 1976). 

Southern Kammu 

klaau 

glaau 

Northern Kammu 

klaau 

klaau 

Translation 

eagle 

stone 

All languages which have segments contrasting in voicing and which have 

been subjected to instrumental study, show an FO difference of just this sort on 

the following vowels (Meyer, 1895; Hombert et al., 1979). Evidence exists that in 

the absence of other cues, English listeners can differentiate syllables such as /kE/ 

and /gr./ on the basis of the former having a falling FO on the vowel and the 

latter a rising FO (Fujimura, 1971). Apparently in the languages immediately 
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descendant from Middle Chinese and the parent language of Northern Kammu, 

listeners took the FO contour as the intended difference between syllables with 

voiced and voiceless initial consonants. Perhaps this happened when the voicing 

contrast was made weakly or was not detected for some other reason. 

The evidence which sound change provides us on the interaction of 

consonants and FO is quite specific, in fact. It also can tell us that sonorants 

like 1m, n, I, j, wi do not perturb FO, that implosives 16 a I in spite of their 

being heavily voiced, elevate the FO on following vowels, and that only glottal 

consonants such as Ih ? I affect the FO of both the preceding and following 

vowels (Hom bert et al., 1979; Ohala, 1979). 

Another similar case involves consonantal effects on vowels. There is much 

data of the sort in Table 4, which presents samples of sound changes in Tibetan 

TABLE 4 

Data from Tibetan showing the fronting influence of apical consonants on back 

vowels. 

Written Tibetan (c. 8th century) 

drug 

thog 

nub 

but: 

bod 

ston 

Ius 

spos 

Lhasa Tibetan 

> thuu 

> th:>:> 

> nuu 

> ph¢¢ 

> t~ 

> lyy 

> p~~ 

Translation 

six 

roof 

west 

Tibet 

autumn 

body 

incense 

(from Michailovsky, 1975). The forms In the left column are those of written 
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Tibetan which reflect pronunciation in the 8th century; those in the right column, 

the pronunciation of present-day Lhasa Tibetan. The data show what happens to 

back rounded vowels when a final consonant is lost: when it was labial or velar 

there was no substantial change in the quality of the vowel, but when it was 

dental the preceding back vowel became fronted, retaining its rounding, i.e., /u/ 

to /y:/ and /0/ to /~:/. The "seed" of this particular sound change has been 

phonetically documented in a variety of languages, e.g., English (Stevens, House & 

Paul, 1966), Swedish (Lindblom, 1963), French (Chollet, 1976), and Japanese 

(Umeda, 1960). The addition of the apical constriction to that proper to the 

back rounded vowel causes the F2 of the resulting sound to raise; the resulting 

vowel sound is not articulated as a front rounded vowel but it sounds like one. 

For the sound change to have taken place, some listeners must not have been 

able to factor out this fronting distortion (quite an understandable failure if this 

final consonant was weakly articulated and thus not readily detected - which 

must have been the case since the final consonant was lost) and so reinterpreted 

what they heard as a front rounded vowel (see also Ohala, 1981a). 

Other sound changes reveal that labial consonants tend to make front vowels 

more back, especially labial velar consonants like /kp gb w Ht./; /1/, especially 

the velarized or "dark" lateral, tends to shift vowels toward a mid or high back 

position; various types of /r/ tend to centralize vowels and/or make them lax. 

CLUE 3. What are the units of speech perception? 

It is a striking fact that most sound changs usually occur in very specific 

environments. Consider, for example, the fate of the Latin /1/ in French, as 

presented in a simplified way in Table 5. The /1/ changed to an [u]-Iike sound 

only in the environment vowel consonant: in intervocalic position and 

word-initial position it was preserved without change. 

From this we can conclude that it is not phonemes which change (otherwise 

the phoneme /1/ would have suffered the same fate no matter what the 

environment). On the other hand, whole syllables or words are not the typical 

domain of change, either. The likely candidates which remain are something in 
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TABLE 5 

Data showing the fate of III in the evolution of Latin to French. 

Latin French 

alter > autre 

caldus > chaud 

but: 

malus > mal 

ladis > lait 

between, i.e., drawn from a set intermediate III SIze between these two extremes; 

perhaps allophones or diphones (and related constructs). Without reviewing the 

literature which might bear on this question, I would venture the opinion that 

the primary units of speech perception are those regions where rapid acoustic 

modulations occur, i.e., what are commonly called the "transitions" between 

phonemes. (This does not mean that phonemes have no reality; they may be 

inferred from the evidence presented by these more basic perceptual units in the 

same way as objects like cups, faces, and tables may be inferred by cognitive 

processing of what are undoubtedly the primary elements of visual 

perception: edges, shadings of light and dark, etc. Phonemes are also very 

possibly the units used to represent words in the mental lexicon.) 

Units of this sort, i.e., diphone, demi-syllables, etc., which consist of those 

stretches of speech between the periods of minimum rate of change and which 

therefore include the transition, have been quite successful as a basis for SS, even 

though they require an order of magnitude more stored units than would be the 

case with phonemes. It is often thought that their success is due to the fact 

that they sidestep the problems inherent in figuring out how phonemes are to be 

joined in the acoustic domain since they "pre-compile" these junctions. However, 

if my guess is right, their success may be due to the fact that, more than any 
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other unit used in SS, they closely match the units human listeners' ears are 

tuned to. 

CLUE 4: Sounds and Features have Varying Degrees of Salience and 

Confusability. 

If communication engineers were set the task of designing a signalling system 

using the vocal-auditory channel, they would no doubt select units or ciphers for 

transmission which were as different from each other as possible in order to avoid 

confusions or other errors of reception. Human speech wasn't designed this way 

and it turns out that, based on the evidence of sound change, some sounds or 

features are more susceptible to reception errors than others. The cues for 

manner of articulation seem to be more robust than those for place of 

articulation. Nasal consonants in initial position survive unchanged more often 

than oral obstruents in the same position (Ohala, 1975). Weak fricatives, e.g., 

[f, v, 9, 6, X, ¥], change more often than strong fricatives, e.g., [s, z, I, 3, tI, z,l. 

These patterns may all reflect the high degree of salience of the amplitude 

parameter in comparison to other acoustic parameters and, obviously, the greater 

salience of any spectral parameter when it occurs on a part of the signal that 

has high intensity. 

Also, although many sounds are salient by themselves, they are acoustically 

similar to other sounds and are thus susceptible of being confused. Table 6 

provides one example, the shift of palatalized labials to apical or palatal sounds 
3 

because the two have similar spectral patterns. 

CLUE 5: Perceptual Confusions tend to be Asymmetrical. 

3 When reading this and subsequent tables, it should be kept in mind that 
consonants can become phonetically palatalized or labialized by being adjacent to 
palatal and rounded vowels. respectively. 
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TABLE 6 

Examples of the sound change whereby palatalized labials are confused with and 

become apical or palatal sounds (Ohala 1978). 

Standard Czech East Bohemian Translation 

mjest:> nest:> town 

pjtt ttt five 

Lungchow T'ien-chow 

pjaa tJaa fish 

Latin Intermediate Form Spanish 

amplu > ampju > antJo large, spacious 

Roman Italian Genoese 

pjeno tJena full 

bjagko dJagku white 

Latin Fren.ch 

sapiens > saJ wise 

rubeus > rmJ red 

Proto-Bantu Zulu 

pia > -tJha new 
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A puzzling meta-pattern found in sound change is the frequent asymmetry in 

the direction of change (see also Ohala, 1983b, c). Table 6, above, presents one 

such case; shifts in the reverse direction, of palatal or apical sounds to palatalized 

labials, are much less common. Other such asymmetrical sound changes are the 

shift of labialized velars to labials (e.g., Proto-Indo-European ekwos became hippos 

in Classical Greek) and the shift of palatalized velars to apical affricates (e.g., 

Latin radikina "root" became /raditsina/, and subsequently, French racine 

[rmsin]). Such shifts are understandable given the great similarity in the spectral 

patterns of the sounds involved in each pair (Durand, 1955; Halle, Hughes & 

Radley, 1957). 

These same asymmetries have been found in speech perception experiments 

(which reinforces the claim that these sound changes have a phonetic basis). 

Table 7 presents some results from a study by Winitz, Scheib and Reeds (1972) 

involving listeners' identification of CV sequences. 

TABLE 7 

Asymmetries of confusion in a speech perception study by Winitz et al. (1972), 

where ' > ' means 'was misidentified as'. 

Error type Incidence Error type Incidence 

[pi] > [til 34% but [til > [pi] 6% 

[ki] > [til 32% but [til > [ki] 6% 

[ku] > [pu] 27% but [pu] > [ku] 16% 

If one of these pairs of sounds changes into the other because they are 

acoustically similar and listeners mistake which one they are hearing, then it 

should be the case that the sound changes could go in either direction. The fact 

that they don't requires some explanation. A clue to the solution to this puzzle 

may be found in analyses of data from visual perception studies which also 

exhibit a.symmetrical confusions. Gilmore, Hersh, Caramazza and Griffin (1979), 

for example, found the following kinds of asymmetries In subjects' 
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misidentification of the capital Roman letters when presented under conditions 

which degrade perceptual performance, as shown in (3), (where I>' means the 

letter on the left was misidentified as that on the right more often than the 

reverse): 

(3) Q > 0 E > F R > P 

B > P P > F J > I 

The letters in each pair are structurally similar to each other except for some 

extra distinguishing feature. In the case of E and F, for example, both are 

identical except for the "foot" of the E - missing in the case of F. If this 

distinguishing feature is missed when the letter on the left is viewed, then it will 

appear to be the letter on the right. When the righthand letter is viewed, 

however, it is less likely that this extra distinguishing feature will be mistakenly 

"filled in". Herein lies the basis for the asymmetry in confusion (Garner, 1978). 

Pursuing the implications of this clue, it must therefore be the case that the 

pairs of speech sound sequences which exhibit asymmetries in sound change and 

in speech perception studies are acoustically similar except that the ones which 

are more susceptible to change have one or more extra distinguishing features 

which are lacking in the more stable sounds. Research is needed to identify 

these features but some candidates features immediately suggest themselves. For 

example, comparison of the smoothed spectra of the bursts of [giJ and [diJ (see 

Fig. 2 from Stevens and Blumstein, 1978) reveals that each pair is quite similar 

except for a sharp peak at about 3 kHz in the case of [giJ. 
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Figure 2. Spectra of the atop bunts of the 811lables [diJ (solid line) JDld [giJ 

(dashed line). (Redrawn from Stevens and Blum~in, 1978.) 

5 

It is obvious that these features which distinguish one sound :from another 

must be discovered if SS is to be successful. But these perceptual asymmetries 

have more profound implications for ASR. The metric which compares the 

unknown input with a series of known templates should be capable of 

accommodating or reflecting this inherently asymmetrical nature of speech 

perception. That is, it should be the case that an input [di] would be shown to 

be more similar to a reference [gi] than would an input [gi] when referred to a 

[di]. This reflects the fact that it is easier to turn a [gi] into a [di] (by deleting 

the sharp peak in the burst) than it is to turn a [di] into a [gi] (which could 

only be done by adding that spectral peak). The assumption is made that 

accidental loss of certain features is more likely than their accidental introduction. 

Current comparison metrics used in ASR, e.g., dynamic time warping, can be 

made inherently asymmetric by attaching different weights to paths which skip 

over or which repeat frames in the reference template (cf. R. Moore, this volume). 
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This is certainly a step in the right direction but the evidence I have reviewed 

here suggests that the asymmetrical comparison must also apply to the 

comparison of individual spectral frames or arrays of distinctive features (which 

cannot be done by just skipping or repeating spectral frames) and that the 

asymmetries - the differential weights attached to permitted operations which 

transform the input into the reference template 

sounds or sound sequences. 

may be specific to certain 

CLUE 6: Many Distinctive Features may be Non-Orthogonal. 

In a maximally efficient signalling system the values assumed by any 

parameter should be completely independent of other parameters. Speech, by this 

criterion, is not maximally efficient. An examination of the record of sound 

changes in the history of many languages - including their segment inventories, 

which have been shaped by sound change reveals a number of 

interdependencies among features. 

Place of articulation and the feature of voicing interact as shown by, among 

other evidence, the stop inventories of over 570 languages (surveyed by Sherman, 

1975; see also Gamkrelidze, 1975); Table 8 shows the incidence of stop gaps 

among languages which used a voicing contrast in at least one place of 

articulation for stops. 

TABLE 8 

Incidence of gaps in the indicated place of articulation in the stop inventories of 

over 570 languages (from Sherman 1975). 

Place of articulation: 

Voiceless 

Voiced 

Labial 

34 

2 

Apical 

o 
21 

Velar 

o 
40 

(Many of these languages did not have a voicing contrast on stops; in the vast 

majority of these cases the stops were voiceless. This also demonstrates 
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interdependence between the features 'stop' and 'voice'.) AB can be seen, among 

voiceless stops, the labial stop /p/ is most often missing; among voiced stops, the 

velar, /g/ is the most common gap. Among languages lacking a /p/ (in native 

vocabulary) are Arabic, Yoruha and Vietnamese; Japanese uses a [PI only in very 

restricted phonological environments. Some languages lacking a /g/ are Dutch, 

Czech and Thai. Insofar as we know the history of these languages, the missing 

sounds were present at one time but subsequently changed either in the feature 

of voicing or stoppedness. What was once a [gl in Dutch, for example, is now 

an uvular fricative [xl. 

The physical causes of these patterns are reasonably well understood: In 

the case of the voiceless consonants, the stop burst, which is one of the major 

cues to the presence of a stop, is of much lower intensity in the case of /p/ 

since, unlike the other stops, it has little or no resonating cavity in front of the 

point of release (where the burst is created) to reinforce it. In the case of the 

voiced consonants, the smaller air cavity behind back-articulated stops is less able 

to accommodate the glottal airflow with the result that the rapid accumulation of 

air behind the constriction diminishes the transglottal pressure drop and hence the 

rate of glottal airflow and thus voicing (Ohala, 19838). 

Voicing also doesn't sit comfortably on fricatives. Voiced fricatives require a 

delicate aerodynamic balancing act: for optimal frication the pressure drop across 

the consonantal constriction should be high; for the sake of optimal voicing, the 

pressure drop across the glottis should be high. These two requirements are 

represented in (4). Since atmospheric pressure cannot be manipulated and 

(4) For optimal frication: P atmospheric < P oral 

For optimal voicing: P oral < P subglottal 

subglottal pressure cannot be easily altered in the short interval (e. 60 msec) 

required for the production of a single obstruent, the only one of these pressures 

that is amenable to modification is the oral pressure. But for one purpose it 

should be as high as possible while for the other as low as possible. Both 
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cannot be done simultaneously. Therefore, to the extent that voiced fricatives 

have intense. frication, e.g., [s,z,I,J] the so-called "strong fricatives", they have a 

tendency to become devoiced, while to the extent that they have robust voicing, 

e.g., [P, v, 0, V, B', t], the "weak fricatives", they tend not to have very much 

frication. 

Rules for SS need to take account of these non-orthogonalities by, e.g., 

modifying the degree of voicing or noise intensity depending on what other 

features they co-occur with. Natural sounding synthetic /gl's in American 

English will not only be typically voiceless but will even have up to 20 msec of 

aspiration, even in pre-stress intervocalic position (Ohala, 19S1b). 

Feature-extracting algorithms for ASR will not be able to use quite the same 

methods in the detection of, say, all voiced obstruents or all fricatives. 

It should also be mentioned that non-orthogonality of features may appear 

not only due to articulatory, but also acoustic-auditory factors. It is not 

physiologically difficult to add pharyngealization (a secondary constriction in the 

pharyngeal region) to consonants having primary place of constriction in the labial 

and apical regions. However, Arabic, noted for its pharyngealized or "emphatic" 

sounds, uses this contrast primarily (some would say 'exclusively') on apical 

sounds. The reason is that the acoustic manifestation of pharyngealization is a 

lowering of some of the higher formants but labials already have lowered formants 

and so would not manifest this effect in an optimal waYi apical sounds, on the 

other hand, have maximally high F2 and so would manifest pharyngealization's 

lowered formants quite clearly. (For further discussion, see Ohala, in press bj 

Ohala IlL Kawaskai, in press.) 

CLUE 7: Listeners Perform Error-Correction in Speech Perception 

In the introduction I suggested that the speech signal is a composite of the 

intended message (pronunciation) plus unintended distortions caused by the 

physical constraints of the speech production apparatus and that one of the tasks 

of the listener is to strip away the distortions in order to recover the canonical 

form of the message. If this is accepted, it has rather important implications for 
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ASR, namely, that successful speech recognition by machine will have to duplicate 

the listener's performance. Given that variability is at the heart of the problems 

facing ASR, developing this error-correcting capacity may be the key to successful 

ASR. That human listeners do have this capacity need not be simply assumed; 

there is evidence for it from sound change. I argue that some sound changes, 

those said to exhibit "dissimilation", are caused by the listeners inappropriately 

applying their error-correcting rules. 

To begin discussion of this topic, we note first that assimilation can 

sometimes extend over relatively long stretches of speech. In a C1 VC2 sequence, 

for example, not only the intervening V but also C1 can assimilate to some of 

the features of 02' An example of this may be found in Kaiwa, an indigenous 

language of Brazil (Harrison & Taylor, 1971). The phrase /dYu7i oWe/ "frog" 

may appear in casual speech as [Jlii.?i 0 we] where the nasalization of the [ow] has 

spread all the way to the beginning of the phrase to change /dY / to [Jl] (the 

palatal nasal). We assume that this kind of distortion presents no difficulty for 

listeners because they can factor it out. Now, however, consider the evolution of 

the Latin word quinque [mokwe] in its various daughter languages; see (Sa). 

The stages in the evolution of this word from Latin to Italian, for example, is as 

given in (5b). 

(5) (a) 
Latin ~r~~ ----r--"l --r---l -I 

(b) kwiokwe 

! 
kiokwe 

! 
tsiukwe 

French cine Spanish ~!,-eQ Italian tJi~~~ 

The initial labialized velar lost its labialization (and subsequently changed to an 

apical affricate - for the reasons discussed earlier). The second labialized velar 
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survived a bit longer. Why should this dissimilation, a Ikw I changing to Ikl 
before another Ikw /, occur? I claim it is due to the listeners erroneously 

attributing the labialization on the first syllable as due to the spreading 

labialization from the second syllable. In other words, they treated this 

labialization as a distortion and factored it out. In their own most careful 

pronunications, this word would not have any labialization in the first syllable. 

Presumably, similar reasons underlie the sound change mentioned above in (2) 

whereby a retroflex vowel [a] becomes de-retroflexed before another retroflex 

sound. 

In the terms of the schematization given above in Fig. 1, the process of 

dissimilation may be represented as in Fig. 3. Here the intended pronunciation 

includes x + y but the decoder interprets y as noise and so strips it from the 

reconstructed signal x. 

r-------, x+ y' 
x 
MESSAGE 

DESTINATION 

Figure 3. Schematic representation of a transmission line used as an analogue of 

speech production and perception to explain the process of 

dissimilation; see text. 

There are a number of pieces of evidence supporting this account of 

dissimilation. First, it would predict that the only phonetic features which could 

be subject to dissimilation would be those features which are known to spread 

like a prosody over large stretches of speech, e.g., palatalization, retroflexion, 

aspiration, labialization, etc., but not features like stop or affricate which by their 
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nature cannot spill over onto adjacent segments. By and large, this prediction is 

borne out (see Ohala, 1981a, 1983b, in press a). Second, there is supporting 

evidence from speech perception studies. Ohalaj Kawasaki, Riordan, It. Caisse 

(forthcoming) (as reported in Ohala, 1981a) had listeners identify as lif or lui 
stimuli of the sort IsVtl, Irvpl where the vowel, V, was one of 9 steady-state 

vowels synthesized to range at regular increments between (and including) Iii and 

lui. Naturally listeners' judgements shifted from being predominantly Iii to 

predominantly lui somewhere in the middle of this continuum. However, the 

location of this crossover point was further towards the front of the vowel space 

(i.e., towards lif) when the vowels appeared in the Is_tl context than the 

IfJI context. That is, a more front vowel was accepted as a good lui when 

it appeared in a phonetic environment known to cause fronting of back vowels 

(see above). Presumably, listeners attributed some of the frontness of the vowels 

to the surrounding apical consonants, lsi and Itl, and thus factored it out in 

deducing its intended qUality. Several other speech perception studies have also 

shown that listeners identify speech sounds after taking into account possible 

distorting effects of the phonetic environment they are found in (see Ohala, 

1981a, 1983b, in press a, for references). 

There is as yet no suggestion as to how human listeners perform this 

error-corrrection but a number of approaches are possible for algorithms that 

would do the same thing in an ASR task. One might be to take equations such 

as those of Lindblom's, presented above in (1), and turn them around so that 

target formant frequency of vowels could be computed given the rate of speaking, 

the formant frequencies of the adjacent consonants, and the measured formant 

frequencies of the spoken vowel. Another, more qualitative, approach -

appropriate, perhaps, to an "expert system" for ASR - would be statements of 

the sort in (6). 

(6) If: F2 of vowel > 1500 Hz and preceding or following consonants are 

alveolar or palatal, 

Then: vowel has .60 probability of being a back vowel. 
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CONCLUSION 

Some very challenging goals face those working in speech synthesis and 

automatic speech recognition: in speech synthesis, natural~ounding speech from 

unlimited text and in machine recognition of speech, the accurate recognition of 

large vocabulary continuously-spoken speech by any native speaker. I believe that 

the solution to these problems will entail learning as much as possible about how 

speech is structured and how human speakers and listeners accomplish their tasks 

in handling spoken language. One largely untapped but very rich source of clues 

about how speech works is the documentation linguists have accumulated over the 

past 2 centuries of sound change, Le., the changes in pronunciation over time. I 

regard sound change as Mother Nature's speech perception experiment. All we 

have to do is to try to interpret the record of sound change for our purposes. 

In this paper I have given some examples of how one might do this. 
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ABSTRACT 

Speech of unlimited vocabulary can be synthesized from systems which can 

produce the basic set of about 40 phonetic sounds of a language. However, the 

quality of the speech output is highly dependent on the method used in the 

system. Good synthesized speech requires good phonetic rules to give an accurate 

transcription of the input texts. A description of an accurate unrestricted 

text-to-speech algorithm will be described. An evaluation of speech synthesizers 

and the experimental results will be discussed. Further addition of prosody 

features will make the synthesized sound more and more natural. Some new 

systems developed in recent years and their characteristics will be presented. 

INTRODUCTION 

Speech is the primary mode of human communication. The great variety of 

applications of synthetic speech has already been described in the literature, see 

e.g. references [5-7, 10, 13-15, 19, 21, 22, 30, 33J. In this paper, we examine the 

role that synthetic speech can play in the man-machine interface. 
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Methods of synthetic speech production may be grouped in the following 

manner: 

1. Those which involve the storage, processing and coding of actual human 

speech such as those using linear predictive coding, see e.g. [3, 13, 17, 20, 

23]. 

2. Those which involve the synthetic production of speech from formant type of 

synthesizer (usually equipped with flexible filters) and speech from a set of 

rules, see e.g. references [1, 2, 4-6, 8, 9, 12, 21, 25, 26, 28, 29, 31, 32, 34]. 

The former method may employ magnetic tape recordings or the digitization 

and machine processing of speech stored in solid state memory. In either case, 

with or without an encoding process, these methods which are commonly used in 

the manufacturing of talking toys, calculators, and watches are appropriate to 

only those applications where a small finite vocabulary is needed. 

The latter method must be used where the ability to produce a large 

number of different vocabulary items is required. Such IS the case in the 

development of reading machines for the blind or an auditory component to a 

computer assisted learning package. 

The Concordia Speech Project (CSP) is involved in the development of a 

"speech by rule" system that produces speech with a high degree of intelligibility, 

yet is compact enough to be run on a microcomputer. The software was 

developed on a large mainframe, CDC's Cyber 172 computer, and drives a Votrax 

VS-6 synthesizer [26, 28, 29]. 

The Votrax synthesizer is an electronic analogue to the human vocal tract. 

It consists of two sound generator circuits. One produces voiced sounds and the 

other produces fricative sounds. These two outputs are joined and passed 

through a set of filters to simulate the vocal tract's resonance. The synthesizer 

has the ability to produce any of sixty-one phonemes, and is hardware controlled. 

All that is required to run it is a sequence of phonetic codes represented in six 

bit words. The VS-6 model which is used for this research has four set levels of 

intonation which control the phonemes, pitch and amplitude, requiring an 
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additional two bits. Therefore, the entire command word has eight bits. 

The Votrax synthesizer was chosen for this research because its operation 

requires a bit rate of only 70 bits per second and it provides a valuable research 

tool to develop phonetic rules to make it speak unlimited English. In 

microcomputer applications Votrax's single chip synthesizer (the SC-01) can be 

substituted for the VS-6 to which it is supposed to be identical. The major 

shortcoming of the synthesizer is that the lack of software control over pitch, 

speech rate and amplitude makes control of the suprasegmental aspects of speech 

rather limited. 

This paper will present the speech rule system developed at Concordia 

University with experimental results and a comparison of performance with 

another synthesizer, the Type 'N Talk text-to-speech synthesizer. It also gives a 

description of new devices and speech synthesis chips available in the market. 

This paper is mainly addressed to the synthesis of spoken English, synthesis of 

other languages may be found in references [27, 16, 18]. 

PRINCIPLE OF TEXT TO SPEECH CONVERSION 

The development of an algorithm to convert a string of orthographic symbols 

to a string of phonetic symbols needed by the Votrax synthesizer presents a 

problem with many facets. This is particularly true if the algorithm must be 

small enough to be run on a microcomputer. 

Perhaps the simplest workable approach to the problem is that taken by 

Elovitz et al. [6]. In this system, a word is scanned from left to right and 

letters are assigned phonetic symbols solely on the basis of 329 letter-to-sound 

rules. The algorithm is very compact and can be easily implemented on 

practically any microcomputer. The absence of stress rules and problems of 

phonetic accuracy, however, impair the general intelligibility of the output. 
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At the other end of the simplicity continuum are systems such as those 

developed by Allen [2] and Hertz- [8, 9]. Both these systems employ parametric 

synthesizers rather than th,e Votrax synthesizer used in the esp. A parametric 

synthesizer is typically more expensive to run but allows much greater control 

over the realization of stress and intonation. fu Allen's system words are broken 

up into their constituent morphemes. The pronunciation of these morphemes is 

checked against a dictionary of 12,000 entries. In the final output, adjustments 

are made in the cases where affixation affects the pronunciation of root 

morphemes. Those words for which no entries are found are sounded out as 8 

human would upon encountering a new word. 

While there can be little doubt that Allen's system is an excellent one, 

incorporating all known aspects of speech production, its size and complexity 

precludes its implementation on a small microcomputer. 

THE CSP SYSTEM 

The esp system must be considered as one based on stress. It became 

apparent in the early stages of the project that much of the variation in a 

vowel's pronunciation depends more upon whether it is stressed than on its 

immediate segmental environment. The stress assignment algorithm used in esp 
has three major functions: 

1) It aids in the overall intelligibility of words, 

2) It allows for the separate application of rules to stressed and unstressed 

vowels, 

3) It enables the system to capture the most salient characteristic of English 

phonology: namely, that unstressed vowels generally reduce to "schwa". 

In the CSP system, a word is first read in and checked against a prelexicon. 

The prelexicon contains the phonetic code for words which are exceptions to both 

the rules of English pronunciation and afrIXation. An example of this is the word 
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"island", for which the correct pronunciation cannot be established by sounding 

out the word as a whole or by removing the suffix "land" and pronouncing "is" 

in isolation. 

If the word is found in the prelexicon, the phonetic code is sent to the 

Votrax synthesizer. If it is not found, the word is syllabified by counting the 

number of vowel clusters. Of course, not all sequences of vowels are vowel 

clusters, and the system employs a set of rules to distinguish between words such 

as "noun" and "neon" assigning the former a syllable count of one, and the 

latter a syllable count of two. In addition, the detection of final silent "e" is 

necessary to avoid an inflation of the syllable count. It should be noted here 

that because the assignment of stress requires only that the number of syllables 

be known, the system does not establish syllable boundaries within a word. 

Following syllabification, all external affixes are removed from the word. An 

external affix is defined as one which does not affect the placement of stress. 

Examples of these are the suffixes "ness" and "ment". This procedure has the 

advantages of simplifying stress assignment and aiding in the detection of silent 

medial "e". In the word "basement", for example, removal of "ment" places the 

silent "e" in final position where the final silent "e" rule can apply to the word 

"base". In addition, the removal of external affixes makes it possible to limit the 

size of the lexicon. The lexicon is consulted after affixes are removed, and 

therefore need only contain root words. The lexicon entries are words whose 

pronunciations are exceptions to general English rules, but allow for external affix 

removal. Therefore, although a word like "island" must be placed in the 

prelexicon, the correct pronunciation of "Thailand" requires only that "Thai" be a 

lexicon entry. 

If a root word is not found in the lexicon, stress is assigned to it. The 

rules of stress assignment are based on principles of English stress described in 

Chomsky and Halle [4] as well as those in Wijk [32]. Although the Chomsky 

and Hall rules are rather elegant, they could not be taken over wholesale because 

of their reliance on the part-of-speech values of words. The CSP system, which 

does no grammatical parsing could not employ them. 
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Once stress has been established, two sets of text to speech rules translate 

letters to phonetic codes. One set of rules is reserved solely for stressed vowels, 

and the other provides phonetic code for unstressed vowels and consonants. 

Detailed descriptions of these rules can be found in Stein's thesis [26]. 

Before the final output, the phonetic code for any affIxes that were removed 

is attached to the word. The code for affixes is derived using the same set of 

rules as the root word. 

Finally, the entire word is sent to the Votrax buffer. The synthesized 

speech is produced using normal audio speakers. 

Although the sets of stressed and unstressed rules specify different phonetic 

codes for the orthographic representation of vowels, they are identical in 

organization. The rules are organized by grapheme. Thus, there are blocks of 

'A' rules, 'B' rules, etc. 

For example, to determine the phonetic code for the word 'CAT', the system 

must first search linearly through the 'c' rules, then the stressed 'A' rules and 

finally the 'T' rules. The fact that a linear search is carried out through a rule 

block enables us to control the application of rules by ordering them within the 

block. In our example, the 'c' rule that applies is: [C] = /K/. This rule is 

simply read: "The letter 'c' is pronounced IKI". Because the rule specifies no 

special environment for its application, it must occupy the last position in the 

rule block. Otherwise, it would traverse through all other rules which come 

below it. All rules must be ordered, therefore, from the most specific to the 

most general. 

In addition to specifying the pronunciation of a single letter, a rule may 

specify the pronunciation of a cluster of letters. The rule block into which such 

a rule is placed, however, must correspond to the first letter of the cluster. For 

example, the rule that states that [CHR] at the beginning of a word is 

pronounced /KR/ is found in the 'c' rules. 
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The fact that rules must be placed in letter blocks leads to some interesting 

consequences when one tries to capture some of the generalizations of English 

phonology. This can be seen in Figure 1 in which the system's output for the 

word 'COMPUTERS' is displayed. Here the palatalization of the letter 'P' is 

captured by the 'U' rule that is read: "If a stressed letter 'U' is preceded by 

one or more consonants but not (TH,ST,SH,CH,N,X,Y,S,Z,J,L or R) and if it is 

followed by one and only one consonant followed by at least one vowel, then it 

is pronounced /YU /. 

FIGURE 1 
EXAMPLE 1 (using the word 'computers') 

WORD % 'COMPUTERS' 
C C 
V 0 
C MP 
V U 
C T 
V E 
C RS 

MAIN WORD 
[C]=/K/ 

THERE IS/ARE 3 SYLLABLE(S) 

PREFIX/SUFFIX RULE(S) NUMBER(S)-7 
3 SYLLABLE(S) IS/ARE CONSIDERED IN RULE 
AFTER STRESS RULE, WORD BECAME % COMPUTER 
STRESS 1 AFTER THE PREFIX % U 
RULE 19 

[jO(Sl)jO/]=/UH3/ 
[M]=/M/ 
[P]=/P/ 
(Cl)/TH;ST;SH;CHjN;X;Y;S;Z;J;L;R/"[U](Cl,l)(Vl)=/Y U/ 
[T]=/T/ 
[jE(Vl)jE/]=/EH3/ 
[R]=/R/ 
SUFFIX 
%(Cl)/T'/"[S]#=/Z/ 
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Figure 1 exemplifies the operation of the algorithm described· above. The 

word is first divided into consonant and vowel clusters. All afrIxesare identified 

and stress is assigned to the appropriate vowel. It is the knowledge that all 

vowels except the 'U' are unstressed that allows the lax pronunciation to be 

assigned to the '0' and 'E'. 

In this case the plural morpheme'S' is seen as an external affix because it 

does not affect the placement of stress within the main word 'COMPUTER'. 

PERFORMANCE 

All of the first five thousand most frequently used words in the Brown 

corpus are pronounced correctly by the CSP system, within the hardware 

limitations of the Votrax synthesizer. 

This was ascertained by listening to the synthesized version of each word 

and by looking at the phonetic transcription that was being produced to drive 

the synthesizer. 

It was decided, however, that if the true performance of the CSP system 

were to be evaluated, a test situation more closely approximating the actual 

conditions under which the system would be used was needed. An experiment 

was therefore devised to test the performance of the CSP system against that of 

a human speaker and another, simpler, system - Votrax's Type 'N Talk. This 

synthesizer is based on the SC 01 chip, and its repertoire of phonemes is nearly 

identical to that of the VS 6. Both synthesizers are made by the same company. 

However, the Type 'N Talk contains its own built-in algorithm for text to speech 

conversion. 

It was envisioned that the comparison of the CSP system to the Type 'N 

Talk would yield information on whether the greater complexity of our system 

actually produces significantly more intelligible output than a simpler , and 

therefore less expensive, algorithm. 
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they do not allow the listener to successfully employ any word expectancy 

strategy. 

The nine lists of ten words were presented by means of a tape recording at 

approximately 60 dB to three randomly assigned groups of subjects. Three lists 

were read by a human, three by the Type 'N Talk, and three by the esp. 

After each sentence was read, the subjects were required to write down exactly 

what they had heard. The test situation was therefore very similar to a 

standard dictation exercise. 

The variables being manipulated were speaker (eSp, Type 'N Talk, human) and 

practice for each condition (first, second and third set of trials). 

The design was a fully counter-balanced 3 x 3 factorial design with repeated 

measures on both factors. 

After the subjects had completed the dictation task, each group was asked to 

subjectively rate the reading of an article from Time magazine by one of the 

three speakers in terms of overall intelligibility. The subjects were given a 

numerical rating range from zero to one hundred. 

Results 

A two way analysis of variance with factor trial (1st, 2nd, 3rd) and system (eSp, 

Type 'N Talk, human) with repeated measures on both factors was done. The 

main effect for system was F(2,178) = 4231, .001. The main effect for trial was 

F(2,178) 95, .001, while the interaction between system and trial was 

F(4,356) 9.96, .001. 

These results are represented graphically in Figure 2. 

The subjective ratings of the magazine article reading for each of the three 

speakers yielded the following results on a scale of I to 100: Human = 91; 

eps 64; Type 'N Talk = 32. 
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DISCUSSION AND PRELIMINARY ERROR ANALYSIS 

The large difference in words correct for esp and "Type 'N Talk" was not 

expected. It would be convenient to attribute all the difference between the two 

systems to the fact that esp uses a more sophisticated algorithm. Although this 

certainly is an important factor it does not account for all the results obtained in 

the experiment. 

Spectrographs taken of the sentence "The tiny girl took off her hat.", spoken by 

all three systems show some important differences between systems. The 

spectrographs were made from the tapes actually used in the performance test. 

The formant transitions produced by the Votrax VS-6 synthesizer, used in the 

esp, tend to be smoother than those of the "Type 'N Talk". Much more 

information is available from the speech produced by the Votrax VS-6 at the 

higher frequencies than that of the "Type 'N Talk". 

It is our aim at the esp to use the results of this experiment to point to areas 

in which improvement to the esp system is most needed. Preliminary analyses 

have revealed some interesting tendencies. It seems to us that the vast majority 

of errors are a result of 'semantic filling'. It is probable that in processing the 

sentences, the cadets did not recognize each word as they heard it, but rather, 

formed a general impression of the meaning of the sentence based on the key 

words that they did recognize. For each sentence then, the previously 

unrecognized words were filled in to construct a syntactically correct sentence that 

would be consistent with this meaning. The use of this strategy can be detected 

precisely because it did not work. The sentences used in the experiment were 

constructed so as not to allow the listener to build the entire sentence using only 

partial information. Had normal sentences been used, the semantic fIlling strategy 

would have undoubtedly been more successful. 

Our observations have thus far been consistent with this explanation. Relatively 

few errors were made in the recognition of open-class words (nouns, verbs, 

adjectives and adverbs) whereas errors were frequently the result of the 

substitution of one preposition for another or the switching of article forms (a, 

the). Even where errors in open-class words were made, evidence points to 
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semantic filling. In the sentence, "The Friendly gang left the drug store", 'gang' 

was changed to 'man' by a great many subjects listening to the CSP version. 

The most plausible explanation for this is that one generally does not expect a 

gang to be friendly. 

Although we must emphasize that our error analysis results are preliminary, the 

concept of comprehension threshold promises to play an important role in the 

evaluation of synthetic speech systems. The Type 'N Talk system seems to be 

below the threshold for the recognition of open-class words. The CSP system 

seems to be at present below the threshold for the complete comprehension of 

closed-class words, in the absence of syntactic or semantic redundancy. We are 

currently investigating the role that increased phonetic redundancy could play in 

improving the intelligibility of the CSP output. 

NEW SPEECH SYNTHESIS SYSTEMS AND CHIPS 

As research and technologies advance in the field of speech synthesis and 

micro-electronics, new integrated circuit chips have been developed by a number 

of manufacturers [22]. Some of them perform the specific function of speech 

synthesis while others also include a text-to-speech algorithm. Obviously those 

presented in the following table do not necessarily exhaust all the speech synthesis 

systems and chips which exist in this rapidly growing market, anyhow, this list 

should provide the readers with sufficient leads to explore them further., As 

expected, most speech synthesizers accept ASCII texts and convert them to spoken 

English or other languages. they also provide controls (either discrete levels by 

software or external adjustment) on both pitch, speed and amplitude. These 

devices can be interfaced to most computers easily through the serial port. 

Several speech synthesis systems incorporating the synthesizer chips already exist 

in the market, e.g. the Type 'N Talk by Votrax, Intex-Talker by Intex Micro 

Systems Inc., and the Sweet Talker II by The Micromint Inc., all built around 

the Votrax SC-OIA chip; while the SynPhonix speech articulator by Artic 

Technologies is built from a Silicon Systems Inc. SSI 263 phoneme synthesizer. 
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TABLE 1 New speech synthesis systems and chips from different manufacturers. 

Manufacturer Model Synthesis Vocabulary Feature 
Technique 

Covox, Inc. Voice Waveform Up to 64 
Master processing numbered words 

and coding or phrases, 
or other sounds 

-~---"""--"-"---- -"" -------- -~-

Digital DECtalk Computer Unlimited Can produce 
Equipment model of the voices from old 
Corp. vocal tract male to a 

female, to a 
young child 

General VSM 2032 Linear 
Instrument prediction 

Hewlett- 82967A Linear 1500 words 
Packard Co. prediction 

Infovox, SAlOl Formant Unlimited English, French 
Sweden synthesis Spanish, Italian 

German, 
Swedish 

-

National Digitalker Waveform 256 words 
Semiconductor processing or phrases 

and 
synthesis 

Microtalker Concatenation 256 words 
of waveforms 
and 
processing 

NEC America, AR-10 ADPCM 
Inc. coding 

Oki Semi- MSM 6202 ADPCM Ability to Can store 
conductor MSM 6212 select up to 12-40 sec. 

125 phrases of speech 
stored on 
chip ROM 



www.manaraa.com

490 

Silicon SSI 263 Formant Unlimited I 64 phonemes 
Systems Inc. synthesis each with 4 

different 
duration 
settings 

Speech Plus Prose 2000 Unlimited 
Inc. Prose 2020 

I 

Text 5000 Unlimited I IBM PC 
compatible 
also through 
toned 
telephone 

Street ECHO GP Unlimited Stand-alone 
Electronics unit with 
Corp. own on-board 

microcomputer 

I 
Texas TMS 5200 Linear Unlimited 

I 
Instruments prediction 
Inc. 

Vynet Corp. Information I For IBM PC 
"Spoken" by I as a voice 
the computer 

I 
response unit 

as prede-

I termined 
voice I 
messages from 
a program or 
database 

Votrax SC-OIA Formant Unlimited 64 phonemes 
Division, synthesis plus 3 
Federal silences 
Screw Works 

VS-B Formant Unlimited 64 phonemes 
synthesis plus 3 

silences, 
French and 
German 
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CONCLUDING REMARKS 

Speech synthesis by computer has been investigated by many researchers in the 
past two decades. This field has advanced from the simple method of split and 
concatenation to highly sophisticated methods of coding and employing powerful 
phonetic rules. As demonstrated in this paper, computer synthesis of spoken 
English, probably the most difficult one among European languages [25), due to 
immense variations and inconsistencies between English spelling and pronunciation, 
has been developed successfully. Additional research on prosodic and 
suprasegmental features will improve the naturalness of synthetic speech. 
Syntheses of other languages also exist in the market. The emergence of VLSI 
(Very Large Scale Integrated) circuits has added a new dimension to the field of 
speech synthesis. Indeed, as shown in this paper, several speech synthesizer chips 
have been manufactured. This new era has widely opened up the consumer 
market for speech synthesizers in toys, cars, teaching aids, computer terminals, 
automatic telephone answering, alarm systems, disabled aids and message systems 
[19). The consumer market has attracted the attention of several leading 
computer manufacturers. It is anticipated that speech synthesizers will become 
popular built-in attachments to computers and peripherals, and daily utilities. It 
is not surprising that they will form standard peripherals to most personal 
computers in the near future. 

ACKNO~EDGEMENTS 

This research was supported by the Department of Education of Quebec. The 
authors wish to thank Ms. T. Rossman, Mr. C. L. Yu, Mr. G. Liben, and Prof. 
N. Segalowitz for their help and comments in the experimental study of this 
project. 

REFERENCES 

1. W. A. Ainsworth, "A system for converting English text into speech", IEEE 
Trans. Audio Electroacoust., Vol. AU-21, 288-290, 1973. 

2. J. Allen, "Synthesis of speeach from unrestricted text", Proc. IEEE, Vol. 64, 
433-442, April 1976. 

3. B. S. Atal and S. L. Hanauer, "Speech analysis and synthesis by linear 
prediction of the speech waveform", J. Acoust. Soc. Amer., Vol. 50, 637-655, 
August 1971. 

4. N. Chomsky and M. Halle, The Sound Pattern of English, Harper and Row, 
New York, 1968. 

5. S. Ciarcia, "Build a third-generation phonetic speech synthesizer", Byte, 28-46, 
March 1984. 

6. H. S. Elovitz, R. W. Johnson, A. McHugh and J. E. Shore, "Letter-to-sound 



www.manaraa.com

492 

rules for automatic translation of English text to phonetics", IEEE Trans. 
Acoust., Speech, Signal Processing, Vol. 24, 446-459, December 1976. 

7. J. L. Flanagan, "Talking with computers: synthesis and recognition of 
speech by machines", IEEE Trans. Bio-Med. Engng., Vol. BME-29, 223-232, 
April 1982. 

8. S. R. Hertz, "The 'morthology' of English spelling: a look at the SRS 
text-modification rules for English", Working Papers of the Cornell Phonetics 
Laboratory, No.1, 17-28, December 1983. 

9. S. R. Hertz, "From text to speech with SRS", J. Acoust. Soc. Am., Vol. 72, 
1155-1170, 1982. 

10. D. R. Hill, "Spoken language generation and understanding by machine: a 
problems and applications oriented overview", in J. C. Simon (ed.), Spoken 
Language Generation and Understanding, Proc. NATO Advanced Studies 
Institute, D. Reidel Publishing Co., Dordrecht, 3-38, 1980. 

11. J. N. Holmes, "Formant synthesizers: cascade or parallel", Speech 
Communication, Vol. 2, 251-273, 1983. 

12. S. Hunnicutt, "Phonological rules for a text-to-speech system", Technical 
Report, Research Lab of Electronics, MIT, 1979. 

13. L. M. Koehler and T. C. Mackey, "Speech output for HP series 80 personal 
computers", Hewlett-Packard Journal, 29-36, January 1984. 

14. J. A. Kuecken, Talking Computers and Telecommunications, Van Nostrand 
Reinhold, New York, 1983. 

15. D. L. Lee and F. H. Lochovsky, "Voice response systems", Computing 
Surveys, Vol. 15, 351-374, December 1983. 

16. S. C. Lee, S. Xu and B. Guo, "Microcomputer-generated Chinese speech", 
Computer Procesing of Chinese & Oriental Languages, Vol. I, 87-103, 
December 1983. 

17. K.-S. Lin, K. M. Goudie, G. A. Frantz and G. L. Brantingham, 
"Text-to-speech using LPC allophone stringing", IEEE Trans. Consumer 
Electronics, Vol. CE-27, 144-152, May 1981. 

18. W. C. Lin and T.-T. Luo, "On synthesis of Mandarin by means of Chinese 
phonemes and phoneme-pairs (JlFH)", to appear in Computer Processing of 
Chinese and Oriental Languages, an international journal of the Chinese 
Language Computer Society. 

19. G. C. Lyman, III, "Voice messaging comes of age", Speech Technology, Vol. 
2, 45-49, August/September 1984. 

20. J. D. Markel and A. H. Gray, Linear Prediction 0/ Speech, Springer-Verlag, 
New York, 1976. 

21. M. D. McIlroy, "Synthetic English by rule", Computer Science Tech. Report 
14, Bell Laboratories, Murray Hill, Ner Jersey, March 1974. 

22. N. Morgan, Talking Chip8, McGraw-Hill Book Co., New York, 1984. 
23. F. S. Mozer, "Method and apparatus for speech synthesizing", US Patent No. 

4,214,125, July 1980. 
24. 1965 Revi8ed Li8t 0/ Phonetically Balanced Sentence8 (Harvard Sentence8), 

IEEE Trans. Audio Electro-acoust., Vol. AU-17, 238-246, 1969. 
25. B. A. Sherwood, "Fast text-to-speech, algorithms for Esperanto, Spanish, 

Italian, Russian and English", Int. J. Man-Machine Studies, Vol. 10, 669-692, 



www.manaraa.com

493 

1978. 
26. S. B. Stein, "A unrestricted text-to-speech algorithm for the Votrax 

synthesizer", M. Compo Sc. Thesis, Concordia University, Montreal, March 
1982. 

27. C. Y. Suen, "Computer synthesis of Mandarin", Proc. IEEE Int. Conf. 
Acoustics, Speech and Signal Processing, 698-700, April H176. 

28. C. Y. Suen, T. Rossman, S. Stein, M. G. Strobel, C. Charbonneau and L. 
Santerre, "Computer speech synthesis at Concordia University", Proc. Int. 
Electrical, Electronics Conf. & Expo, 176-177, 1981. 

29. C. Y. Suen, S. B. Stein, M. G. Strobel and L. Santerre, "An unrestricted 
text-to-speech algorithm for the Votrax synthesizer", Proc. 10th Int. Congo 
Phonetic Sciences, 394, August 1983. 

30. E. R. Teja, Teaching Your Computer to Talk, TAB Books Inc., Blue Ridge 
Summit, P A, 1981. 

31. N. Umeda, "Linguistic rules for text-to-speech synthesis", Proc. IEEE, Vol. 
64, 443-451, 1976. 

32. A. Wijk, "Rules of pronunciation for the English language", London, 1966. 
33. I. II. Witten, Principles of Computer Speech, Academic Press, New York, 

1982. 
34. I. Witten and J. Abbess, "A microcomputer-based speech synthesis-by-rule 

system", Int. J. Man-Machine Studies, Vol. 11, 585-620, 1979. 



www.manaraa.com

PROSODIC KNOWLEDGE IN THE RULE-BASED SYNTHEX 

EXPERT SYSTEM FOR SPEECH SYNTHESIS 

A. Aggoun, C. Sorin, F. Emerard, M. Stella 

C.N.E.T. - Lannion 

Route de Tn!gastel 

BP 40 

22301 Lannion Cedex 

France 

1. INTRODUCTION 

Speech synthesis is the transformation of a written text into an acoustic 

signal. 

The speech synthesis system by diphones developed at C.N.E.T. (Centre 

National d'Etudes des Telecommunications de LANNION) is complete and is 

described in [14, 23]. The synthetic speech produced by the system is intelligible, 

but lacks more naturalness. The improvement of the intelligibility and 

naturalness depends in particular on progress carried out in segmental and 

prosodic rules. At the moment, experiments with new rules and in particular 

prosodic rules are not easy. 

During the last few years, different speech synthesis systems from a written 

text have emerged. Some of these systems are written in classical programming 

languages (FORTRAN, etc ... ), which makes modification and improvement difficult. 

More recently, the use of knowledge based systems as a framework has 

spread into new areas, such as speech recognition [15] and natural language 

understanding; the methodology of the expert systems facilitates an incremental 
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transfer of knowledge from the human to the machine. 

In this paper, we discuss the SYNTHEX (System SYNTHesis EXpert) system 

developed at C.N.E.T. The design of SYNTHEX is an example of the use of 

Artificial Intelligence techniques in order to study various problems related to 

speech synthesis from a written text [I, 2J. The main aim of this project is to 

develop a tool able to formalize knowledge related to the problem of speech 

synthesis from written text and to improve this knowledge. 

IT. TEXT -TO-SPEECH 

Speech synthesis systems combine a given method with a given technique [9, 

11, 23]. The technique permits the reconstruction of the acoustic signal 

containing the characteristics of the speech sound from certain parameters. The 

"tcxt-to-speech" method consists of generating the above parameters from a given 

written text, such as synthesis by word, synthesis by rule [3, 7, 8, 16] or 

synthesis by concatenation of preanalysed units [14]. 

The speech synthesis system (fig. 2) is composed of: 

a grapheme-to-phoneme conversion module [12] which produces a string of 

phonetic symbols based on information in the written text; 

a prosodic module [14, 20, 24J which processes rules (expert rules) to produce 

prosodic parameters (pitch, duration and loudness); 

a conversion module which converts prosodic parameters into appropriate 

parameters in order to drive the synthesizer; 

a synthesizer to reconstruct the acoustic signal using various techniques [23]. 
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written text 

(Ie dromadaire boit de Peau.) 

! 

Grapheme-to-phoneme conversion 

string of phoneme symbols + markers 

(1 a " " d rom a d t r "$" b w a "=" d a " " 1 0 ".") 

! 

prosody computation 

prosodic parameters 

(duration, loudness, pitch) 

! 

command generator 

~ 
commands 

Fig. 1: Text-to-speech synthesis 

dictionary : 
spectral 

parameters 

~ synthesizer I-C(]* 

The translation of the french sentence "Ie dromadaire boit de l'eau." is "the 
dromedary drinks water." 

N.B.: Phoneme codification used in the example: 
phonemes: 1, d, r, m, b, w, 0, 0, a, t, 

markers: " ", "$", " " «" =, 
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m. PURPOSE OF THE SYNTHEX EXPERT SYSTEM 

The SYNTHEX system has been developed originally to provide investigation 

in the speech synthesis domain. From the beginning, the goal of this system was 

to formalize the prosodic module (fig. 1) of the speech synthesis system. 

phonetic symbols 
+ 

markers > prosody 
computing 

Fig. 2 Prosodic module 

prosodic 
parameters 

The system accepts as input a string of phonetic symbols (grapheme-to-phoneme 

conversion) and prosodic markers, and delivers as output prosodic parameters such 

as pitch, loudness and duration. Some markers are delivered implicitly in the 

text, such as punctuation markers and spaces between words. The remaining 

markers indicate syntactic points in the sentence such as the end of the preverbal 

group. 

Some of the existent systems are written in an ad hoc manner, so their 

adaptation and maintenance are difficult. Other software packages are 

parameterized, but they can not solve problems caused by adding new knowledge, 

neither those caused by modifications of the existing rules. 

In recent years, different languages adapted to phonetic and linguistic 

terminology have been proposed for synthesis by rules [3, 7, 8, 16, 221. These 

languages~ are easy to use, but it is difficult to take into account the syntactic 

structure of the sentence. 

The SYNTHEX expert system has been developed to fulfil the following 

goals: 

simplicity is essential, since speech synthesis experts are not necessarily 

programming specialists; 

independence from the language being synthesized (French, English, etc ... ) and 
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the synthesis technique; 

paraphrase and reformulation of the rules expressed by the speech experts to 

avoid any ambiguity; 

explanation of the reasoning adopted by the system during execution; 

formalization of the speech experts knowledge; 

introduction of methods for improving this knowledge. 

IV GENERAL ARCmTECTURE OF TIlE SYSTEM 

SYNTHEX is an expert system based on production rules [4, 17, 19, 21]. 

These rules defined by the user are stored in knowledge bases. Briefly an expert 

system is composed of: 

knowledge bases (methods, facts, assertions, relevant assertions, 

metaknowledges, etc ... ) 

inference cn~inc (pattern matcher, knowledge modifiers, etc ... ) 

working memories (current goals, current hypotheses, etc .... ) 

V KNOWLEDGE EXPRESSION LANGUAGE 

To facilitate the transfer of the experts synthesis knowledge in the system, 

we have devloped a formalism adapted to the expert's needs. One of the basic 

criteria of this system is its simplicity. It should be easy to use by non 

programming specialists. 

In this chapter we describe the external formalism. 

The corresponding internal formalism will be illustrated in V. 2. 
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knowledge 
expression 
language 

/' ...... ./ " 
knowledge bases 

- rules ...... , SYSTEM ..... '" 
- syntactic 

models 

User domain 

./ 
application 

..... functions 

input " , 

output , 
...... 

Fig. 3: General architecture of the SYNTHEX system 

V.I EXTERNAL FORMALISM 

This formalism permits the expression of the two following entities: 

syntactic models which express the application concepts 

prosodic rules, as production rules. 

V.I.I SYNTACTIC MODELS 

I 

Those are essentially composed of syntactic structures, definitions, object 

descriptions and dictionaries containing the specific application data. 

The "syntactic structure", "definition" and "object description" models should 

allow for the construction of a syntactic tree from a sentence composed of 

phonetic symbols and markers. 
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The various prosodic rules are applied to this tree. These concepts are 

derived from the study of speech synthesis. The syntax is carefully chosen to be 

as close as possible to the formalism used by synthesis experts. 

syntactic 
structures 

Fig. 4: Syntactic models 

SYNTACTIC NOTATION 

the strings of underlined lower characters represent terminals, 

the strings of upper case characters represent non-terminals 

{A} n, * if n 0 => the symbol A is optional 

if n F 0 => 1 or many times the symbol A 

* = > means many times 

V.I.I.I - SYNTACTIC STRUCTURE 

Syntax : 

Where: 

EXAMPLE 

(slntax: ( {OBJECT} 1, *) 

OBJECT :: string-of-characters 

(syntax : (sentence word syllable phoneme frame)) 

(syntax : (sentence marker)) 

dictionaries 
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This example describes a syntactic tree where the root (ancestor) is sentence. 

The descendants of the root are either word nodes or marker nodes. Each word 

node can be broken down into smaller descendants, for example syllables, etc ... 

This syntax permits the user to define the different structures required for 

his application. 

V.l.l.2 - DESCRIPTIONS 

syntax: 

Where 

EXAMPLES: 

(description: OBJECT {ATTRIBUT} 0, *) 

ATTRIBUT :: string-of-characters. 

(description : word (number-of-syllables type)) 

This model describes in terms of attributes each object declared in the 

syntactic structures. In the above example, the object "word" is characterized by 

the two attributes "number-of-syllables" and "type" (the type of a word may be 

lexical, grammatical, etc ... ). The system uses these models which define each 

node and its attributes to generate the syntactic tree from a written text. The 

attributes of the objects are instantiated in the second phase when rules are 

applied. 

V.I.loS - DEFINITIONS 

syntax: (definition OBJECT 

DOMAIN 

REWRITING-RULES) 

Where: DOMAIN: define the set of values of the object 

REWRITING-RULES: these rules permit the input sentence to be structured in 

accordance with the syntactic pattern described by the 

user. 
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EXAMPLE: 

In figure 7, the domain of the object marker is: 

(belong to (" " "$" "=" ".") 

The rewrite rules are expressed in an adequate formalism. The following 

rules are used to structure each word into syllables (Fig. 5). 

EXAMPLE: 

[consonant consonant vowel consonant vowel] -+ 

[consonant consonant vowel) (consonant vowel] 

Iconsonant vowel consonant vowel] -+ 

[consonant vowel) (consonant vowel] 

Iconsonant vowel consonant end} -+ 

[consonant vowel consonant] 

(d rom a d I: r) --I rewriting rules >~ 
(d r 0) (m a) (d I: r) 

Fig. 5: Results once the rewrite-rules above are applied 

phonetic symbols 
+ 

markers 
syntactic 
models 

syntactic tree 

Fig. 6: Syntactic models interpretation 

As shown in fig. 7, the string of symbols placed at the first level of the tree 

represents the instance of the object "sentence" . The system produces the 

descendants of the root derived from the object "sentence" and information 

obLained from syntactic models. The second level is composed of: 

objects of type "word": (1 a), (d rom a d I: r), (b w a), 

(d a) and (l 0) 
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"=" d a " " I 0 ".") 

marker word marker 
"$" (b w a) "=" 

(d r 0) (m a) (d I: r) 

~ 
phoneme plioneme 

m a 

/~ 
frame ... frame 

1 n 

ord 
"" 

Fig. 7: The generated syntactic tree once syntactic models are performed the 
input of the interpreter system is: 

(I a " " d rom a d I: r "$" b w a "=" d a " " I 0 ".") 

objects of type "marker" : " ", "$", "=" and "." 

Once objects of the second level are generated, the system performs rules to 

decompose each instance of word into syllables. In this example, "(d rom a d 

I: r)" is composed of three syllables with their respective values "(d r 0)", "(m 

a)" and (d c r). The same process is repeated at each level until the syntactic 

tree is completed. The group of objects obtained constitute working data base to 

which prosodic rules can be applied. 
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V.l.l.4 - THE DICTIONARIES 

The dictionary is a store of knowledge base which consists of the specific 

application data (the dictionary of diphones or phonemes, the phoneme features, 

etc ... ). The acquisition of this knowledge can be achieved by an adapted 

programming tool. 

V.1.2 - PROSODIC RULES 

As we have already indicated, all vocal synthesis systems include a prosodic 

module. In the SYNTHEX system this part is referred to as "prosodic rules". 

These rules take into account the statements of the syntactic models. 

syntax: 

Where 

semantic: 

(problem IDENTIFIER 

w: 
{- PREMISE }n, * 

the..g} * 
{- ACTION }n, *) 

IDENTIFIER :: string of characters which identifies the problem. 

PREMISE : a condition which has to be satisfied 

ACTION: an action to be carried out. 

case 1: the premises are not omitted 

(problem : toto 

if 

- pI 

- p2 

then 
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- al 

- a2) 

the associated semantic is 

case 2: 

li (pI and p2) then (a1 and then a2) 

the premises are omitted 

(problem : toto 

- a1 

- a2) 

The associated semantic is 

do a1 and then a2. 

SYNTHEX differs from other similar experiment systems in this domain in 

that it permits the speech synthesis expert to use his natural language when 

formalizing a problem. In fact, in the prosodic rules, the "PREMISES" and 

"ACTIONS" are expressed in a pseudo-natural language, i.e. in the form of 

sentences using a restricted french grammar (sub-grammar) augmented by 

variables. We know, based on the research done by several teams on the 

comprehension of natural languages [13, 10], that problems presented by 

"anaphoras" and pronominal reference are particularly difficult to carry out. The 

notion of variable allows such difficulties to be solved elegantly and simply 

without making speech synthesis expert's task more difficult. In a written text, a 

variable is a string of characters preceded by the special character "*". The 

"prosodic rules" component is organized as a set of knowledge bases, each one 

regrouping different problems. Each problem regroups a set of rules. 

EXAMPLE: 

exp-base is the name of the knowledge base in the figure below. 

This knowledge base (fig. 8) includes four problems : number-of-syllables, 

first-consonant-duration, initial-duration and pause. Each of the first problems 

contains one related rule while the fourth one contains two rules. 
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exp-base 

problem 
num ber-of-syllables 

problem: 
first-consonant-duration 

problem: 
initial-duration 

problem: 
pause 
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rule 
pause: 1 

rule: 
number-of-sullables :1 

rule: 
first-consonant-duration 1 

rule: 
initial-duration 1 

rule: 
pause: 2 

Fig. 8 Example of knowledge base 

According to the external formalism, the first rule of the knowledge-base is 

described below: 

(problem number-of-syllables 

if 

- there exists a word *x 

then 

- count in *1 the number of phonemes whose instances are vowels 

- attribute to the number-of-syllables of the word *x the value of the 

variable * 1) 

Remarks: 

*x IS a variable used to reference the object typed "word", 

*1 IS another variable which contains intermediate results, 

premise 

if there exists a word in the syntactic tree 

actions 
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first action : count in the variable *1 the number of phonemes whose 

instances are vowels 

section action : gives to the attribute "number-of-syllables" of the word above 

the value of the variable *1. 

V.I.3 - EXAMPLES 

For reasons of simplicity, it is assumed the statement below is true: 

(description : phoneme (instance)) 

(description : frame (duration)) 

(description : marker (instance duration)) 

Example 1 

(problem initial-duration 

if 

- there exists a word *m 

then 

- attributes to the duration of all frames of the word *m the value 26 multiplied 

by 0.85). 

Remark 

The rule gives to the attribute "duration" of all phoneme frames of each 

sentence's word the value 26 multiplied by 0.85. 

Example: 2 

(problem : first-consonant-duration 

if 

- the instance of the first phoneme *pl of a word *w is consonant 

- the instance of adjacent right phoneme *p2 of the phoneme *pl 

in the word *w is vowel. 
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Then 

- print ("rule : frame's durations of the first phoneme") 

- multiply the duration of all frames of the phoneme *pl by the value 1.15 

- display the instance of the phoneme *pl 

- display the duration of all frames of the phoneme *pl). 

Remarks 

If the first phoneme of a word possesses the characteristic "consonant" and if 

its immediate successor in the same word has the characteristics "vowel", then 

the following actions can be applied successively. First print the parameter text 

of the primitive "print", then multiply by 1.15 the value of the attribute 

"duration" of all phoneme frames. 

Example: 3 

(problem pause 

if 

- the instance of a marker *x belongs to the list ("*" "+" "&") 

then 

- attribute to the pause of the marker *x the value 65). 
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- the instance of a marker *x belongs to the list ("." "1" "!"). 

then 

- attribute to the pause of the marker *x the value 400) 

Remarks 

The problem "pause" contains the two rules : pause : 1 and pause : 2 (see fig. 

8). The system tries all the problem rules scucessively, except those frozen 

dynamically by commands. 

first rule : if the value of a marker belongs to the list ("*" *+" "&"), then 

the associated pause is 65 ms. 

second rule if the value of a marker belongs to the list ("." "1" "!"), then the 

associated pause is 400 ms. 

EXAMPLE 4 : 

(problem : duration-and-pause 

- execute initial-duration 

- execute first-consonant-duration 

- execute pause). 

Remarks 

This rule is not a prosodic rule, but is used to define the order in which the 

prosodic rules are applied, i.e. first the rules concerning initial-duration, next those 

concerning the rirst-consonant-duration and lastly those concerning pause. This 

approach allows several problems to be regrouped under the same name. 
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V.2 - INTERNAL FORMALISM 

The internal formalism is the formalism of Horn clauses (PROLOG clause). 

The PROLOG language [18] is used as a knowledge representation language and 

also as a programming language to perform· the translation of external formalism 

into the internal formalism. 

In fact the language used is LISLOG [5, 6] which integrates the two 

programming languages LISP and PROLQG. 

The internal formalism is directly executable. The LISLOG interpreter plays 

the role of the inference engine of the system. 

VI SPEECH SYNTHESIS : USER DOMAINS 

user input ~ 
ouput 

INTERFACE f >1 SYNTHEX 

Fig. 9 The user domain 

N.B. : A speech synthesis expert can be a user. 

We have shown that experts in speech synthesis express their knowledge in a 

pseudo-natural language, and the system generates the corresponding internal 

forms (HORN clauses). 

As soon as the SYNTHEX system has gathered enough expertise, one can 

use the system to synthesize sentences (Le. check rules, evaluate results obtained, 

etc ... ). 

Example By applying the rule which counts the number of syllables in each 

word, the attribute "number-of-syllables" of each word is given an appropriate 

value. 
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word 1 number-of-syllables 1 

word 2 number-of-syllables 3 

word 3 number-of-syllables 1 

word 4 num ber-of-syllables 1 

word 5 number-of-syllables 1 

SYNTHEX provides a number of facilities for the development of synthesis rules. 

SYNTHEX's editor is interactive. The form of all commands is simplified. 

Syntactic patterns and prosodic rules are structured in knowledge bases. The 

user can define, store, edit, execute and then (possibly) improve the rule. 

The user can also change by commands the ordering of the rules to be 

applied. The system possesses control commands which permits dynamically to 

freeze, activate and execute rules. 

SYNTHEX's debugger facilitates the check of r-qlesj it permits to display the 

text of the rule with the instances of the variables of applied rules. 

Example assume that we want to apply the "pause" rules to the sentence (fig. 

7) and we specify by command to debug the pause : 2 rule, the 

debugger display the following text 

(problem pause 2 

if 

- the instance of a marker 5 belongs to the list ("." "1" "I") 

then 

attribute to the pause of the marker 5 the value 400). 
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vn CONCLUSION 

The mam ams of the development of the SYNTHEX system are : to give a 

method for formalizing the knowledge in the speech synthesis domain (prosody of 

vocal synthesis) and to study methods for improving this knowledge. 

The system is written entirely in LISLOG which allows us to use logic 

programming in different forms. 

The SYNTHEX system is being experimented on. Different extensions are 

being studied in order to explain the rules and the control mechanisms. 

The translation of the written rule to the internal formalism takes about five 

seconds of run time (the run time for the rule in example V.1.3 is about 2 

seconds on a DPS/8 machine) for each rule. The run time of each applied rule 

IS about one second. 

SY N'l'HEX was designed on the multics system. 
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expert user 
"~ J 

1 editor 1 I interface I 

external formalism ~ internal formalism 

Syntactic v "- /' ,I Data 
Models " -' " / (syntactic trees) 

SYSTEM 
PROSODIC RULES Production rules 

(pseudo-nat ural 
"- "-

(HORN clauses) " -' -
language) 

/' "- "-DICTIONARIES r- / DICTIONARIES 
11\ 

inference 

I engine 

application 

I functions 

Figure 10: The complete architecture of the system SYNTHEX 
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ABSTRACT 

This paper is intended to give an overview over the SYNTEX system, a 

text-to-speech software for the German language designated to control phoneme 

synthesizers. Descriptions of the algorithms used for word structure analysis, 

letter-to-sound conversion, computing of word accent, sentence parsing, and 

generating an intonation contour are given. The software runs on a small 

microprocessor system much faster than real-time. 

GENERAL DESCRIPTION 

The general structure of SYNTEX is depicted in fig. 1. It is a construction 

of modules for text preprocessing, for processing at word level, for sentence level 

analysis and for control of prosodics and coarticulations. It is designed to drive 

phoneme or allophone based synthesizers. 

The text preprocessing module converts unrestricted German text into a 

limited set of characters containing only upper case letters and some word 

boundary markers like blanks, commas, periods, etc. This means for example 

NATO ASI Series, Vol. F16 
New Systems and Architectures for Automatic Speech 
Recognition and Synthesis, Edited by R. De Mori and C. Y. Suen 
© Springer-Verlag Berlin Heidelberg 1985 
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text 

___ -tju;estricted text 
~ASCII-code 

preprocessing 

~pital letters, blanks and 
----;~nctuation,add.inforrrotion 

processing at 
the word level 

~emes, word accents, 
p:lrts of speech inforrrotion, 
word baJndories. punctlJJtion 

,..-----"----, 
sentence 
analysis ---rnnemes,word accents, 

phrase accents, sentence accents, 
phrase boundaries, punch.ction 

,..------"----, 
control of prosody 
and coorticulations 

~ophones, pitch 
-----i~nd duration and intensity 

speech 

Fig. 1: The concept of the SYNTEX text-to-speech software 

that strings of digits used to code integer, decimal or ordinal numbers, date, time, 

year or price are "spelled out" as strings of letter characters in the appropriate 

format. Input may be in upper case or lower case only, like a usual computer 

dialogue, or preferably in standard German orthography with initial capital letters 
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for nouns and for the beginning of a sentence, lower case letters elsewhere. 

Standard orthography with nouns marked by capitals is useful for sentence 

analysis. 

The input may be in standard ASCn code or In the German ASCII .. 
character set, which means that the German "Umlaute" 'A' , '0', 'U' and the 

character '{3' may be either represented as national ASCII characters or in 

standard ASCII as 'AE', 'OE', 'UE' and 'SS'. The set of characters may be 

selected statically by escape sequences as well as dynamically by software. In the 

dynamic mode rules based on adjacent characters are used to determine the 

meaning of characters having different meanings in both character sets. 

Word level processing includes an analysis of word structure, a letter-to-sound 

algorithm and a generation of word accent patterns. As the German language 

tends to form compound words, the word structure analysis is based on an 

algorithm for finding morpheme boundaries by rules which employ a recognition of 

affixes. As the pronunciation of German words is based on a morpheme 

decomposition, 72 rather simple rules are sufficient to convert letters to phonemes. 

Word accent is computed by rules as well as by data included in the affix 

dictionaries. 

At the sentence level we have been concentrating on the generation of an 

Fq>-contour by rule. The calculated intonation is a function of utterance length, 

sentence type and number of phrases within a sentence. To detect phrases, we 

use an incomplete sentence parsing, as time is limited for real-time text-to-speech 

conversion. Parsing is done in three steps: first by assigning valences to 

function words, then by combining words to groups with paying attention to 

valences and third by verifying these phrases. The parser also determines the 

most significant word for each phrase and the most significant phrase of a 

sentence which is to carry the sentence accent. Having parsed a sentence in this 

way, each group is associated an Fq>-contour which is similar to the hat-shaped 

patterns proposed by Cohen and t'Hart [7J to describe intonation. 
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ANALYSIS OF WORD STRUCTURE 

German pronunciation ruIes are rather simple compared to English ones, 

provided that the rules can be expresssed at the morpheme level. Unfortunately, 

parsing words into morphemes is a rather difficuIt task, as German tends to form 

compounds more frequently than English. Expressions written in English as 

separate words (e.g. "word structure") are written as one word ("Wortstruktur") 

in German. Compounds acccount only for about 4% of the content words in 

running text, but most of the less frequent words are compounds, and they make 

up more than 50% of the words in a standard dictionary. Hence, for a low 

error rate, an analysis of the word structure is absolutely necessary. 

Simple words containing one root can be decomposed by stripping off affixes 

only. But a compound processed by this affix detection remains as an unsolved 

cluster that starts and ends with roots, and perhaps contains affixes and further 

roots between the bracketing roots. Morpheme based pronunciation ruIes applied 

to such a cluster of morphemes will produce a lot of errors. 

To perform a word structure analysis including a root recognition, algorithms 

based on a complete grammar and a large morpheme dictionary have been used, 

e.g. by Allen [1,2] for American English. This proceeding resuIts in complex and 

slow programs with an extensive need for memory. For this reason we developed 

a decomposition algorithm which is not based on the recognition of all morphemes 

but on the recognition of affixes. It is used together with an algorithm called 

cluster analysis which is able to find boundaries between morphemes. 

CLUSTER ANALYSIS 

This algorithm called cluster analysis is based on the findings of W. Kastner 

[3], who decomposed all German morphemes into basic clusters. Basic clusters are 

strings of adjacent vowels or consonants. The morpheme "Flasche" for example 

decomposes into 
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fl - initial basic consonant cluster 

a medial basic vowel cluster 

sch - medial basic consonant cluster 

e - final basic vowel cluster. 

Kastner found that only 52 different basic initial consonant clusters and 120 

basic final or medial consonant clusters are used to form German morphemes and 

that only few of the initial consonant clusters may be used in medial or final 

positions. He also found some twenty vowel clusters in different positions but 

these are not important for word analysis because most of the German roots have 

consonant clusters in initial and final position. Hence most of the morpheme 

boundaries fall between consonants. 

In order to find morpheme boundaries within a word the cluster analysis 

tries to find medial clusters that are no basic ones. In the word "Weinflasche" 

for example, this test would find the cluster "nfl". Clusters like "nfl" are called 

boundary areas, because there has to be a morpheme boundary within the area of 

this cluster. In order to determine the exact position of the boundary, all 

possibilities are evaluated to split the cluster into basic initial and final clusters. 

"nfl" is neither an initial nor a final basic consonant cluster, hence boundaries 

before or after "nfl" are impossible. But "n-fl" and "nf-l" both split the medial 

cluster into basic clusters. In many cases, only one boundary leads to a valid 

basic cluster, which is a clear result and causes the cluster analysis to stop. But 

with several possible boundaries as in the example "Weinflasche", additional rules 

have to be employed for a decision. 

In cases where there is more than one valid boundary, there can be no 

decision about the correct boundary without further knowledge and 

context-dependent rules. But even without knowledge of the context, a decision 

can be taken which boundary will produce least errors by examining the 

frequencies of the basic clusters. In our example, the basic clusters "n" and "I" 

have a very high frequency in German morphemes, "fl" is rather frequent and 

"nr" occurs seldom. Therefore a boundary between "n" and "fl" would be 

correct in more cases than a boundary between "nf" and "I". This relationship 



www.manaraa.com

522 

can be represented by attaching a number to each basic cluster representing a 

logarithmic frequency of occurrence. To get the most plausible boundary only the 

logarithmic frequencies of the resultant basic clusters have to be added for each 

possible boundary, and the boundary with the highest result will be selected. For 

our example, this decision algorithm marks a correct boundary between "Wein" 

and "Flasche". 

The cluster analysis is able to find most boundaries between roots, due to 

the fact that most German roots begin and end with consonant clusters. For 

this reason, about 90% of the boundaries between roots are detected. Less than 

one third of the undectected boundaries cause pronunciation errors that reduce 

intellegibility. A main accent on a wrong syllable occurs very seldom, a 

mismatched boundary usually only causes a missing secondary accent. The 

typical pronunciation error that has to be expected when applying morpheme 

based letter-to-sound rules to words is a wrong vowel length for vowels preceding 

a final consonant cluster or a morpheme boundary. This error is very rare when 

cluster analysis is used. 

THE ARCmTECTURE OF THE WORD STRUCTURE ANALYSIS 

BASED ON CLUSTER ANALYSIS 

Cluster analysis is well suited to find morpheme boundaries between 

consonants. But a lot of German affixes either start or end with a vowel cluster, 

hence many boundaries adjacent to affixes are not detected. This would be a 

severe problem if there were no other ways of finding the missing boundaries. 

But not every boundary needs to be marked. The affix recognition starts at the 

beginning and at the end of a word recursively looking for the longest affIx. It 

is also capable of starting at the boundaries detected by the cluster analysis 

looking to the left and the right for the longest affix. So all we need is one 

detected boundary within or adjacent to an affix cluster embedded between roots, 

and every affix within this cluster can be recognized. Examining every possible 
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preprocessed text. to be processed word by word 

treatment of the word fragments 
divided by morph boundaries 

to sentence anolysis 

Fig. 2 Processing at the word level 

combination of affIXes between roots in the expressions 

root} 

root! 

root! 

} or more suffixes 

} or more prefixes 

} or more suffixes 

root2 

root2 

} or more prefixes - root2 

we found that in the worst cases 'root! - prefix - root2' the chance of 
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detecting at least one boundary is 89%, in every other case the chance is more 

than 90%, which is sufficient for our purposes. 

Hence, the general proceeding of word structure analysis is: 

Mark morpheme boundaries by cluster analysis 

Strip off inflectional affIxes appearing only at the end of the word. 

Strip off prefixes at the beginning of the word and suffixes at the end of 

the word. 

Look for morpheme boundaries marked by the cluster analysis. If you find 

one, look for prefixes and suffixes to the right and to the left of the 

boundary. 

This procedure is depicted in fig. 2. The chances of finding every affix 

within a word by using this procedure are very high. For this reason, every 

fragment not matched by affix recognition and not split by morpheme boundaries 

can be treated as a root. 

AFFIX RECOGNITION 

In a word decomposition algorithm based on a morpheme dictionary, the 

usual way of getting the correct decomposition of a word is to evaluate every 

possible combination of morphemes and then to score which combination fits best 

[2]. In most cases, there will be just one sequence of morphemes that matches 

the whole word and the algorithm to resolve ambiguities will be needed only in 

exceptional cases. 

In our word structure analysis the problem of how to match morphemes 

within a word is different: we do not have all the "chips" to completely solve 

the "puzzle", nevertheless the few "chips" (= affixes) we have should be placed 

correctly. Attempts to match affixes are supported by word and morpheme 

boundaries and the beginnings and endings of recognized affixes that serve as 

points of departure for the matching process. But in each word there has to be 



www.manaraa.com

525 

at least one gap (= root) that cannot be verified by looking it up in a 

dictionary nor can it be decided without further rules whether the affixes to the 

right and to the left of a gap are correct. For this reason when recognizing 

affixes, the affix and the remaining word fragment have to fulfill some conditions 

for the recognition to be correct. 

If the remaining word fragment is considered to be a root, it has to fulfill 

some general conditions: it should consist at least of one consonant cluster and 

one vowel cluster; it should at least consist of three letters (roots with only two 

letters are very rare), and it should start with a basic initial cluster and end 

with a basic final cluster. These general rules sometimes prevent incorrect 

matches, but in many special cases they still allow the recognition of parts of a 

root as an affix. 

Hence special rules have been introduced for affixes to be recognized. These 

rules define an environment at the boundaries of the affixes, and by controlling 

the environment of the actual match it can be decided whether an affix is 

recognized or not. This leads to an organization of the affix recognition in the 

following way. 

Start at a marked boundary and look for the longest affix. 

When a character string is found that is a potential affix, apply the 

environmental rules in order to verify the affix. 

If the affix is verified, mark the resultant boundary and return to the first 

step. 

If the affix is not verified, look for shorter matches. 

If a shorter match is found, return to the second step, else finish the search. 

The verificiation rules which examine the environment are different for every 

affix, and they are enclosed in the dictionary together with the affix they belong 

to and additional information. The rules have the general form: 
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(action) (environment data) 

where (action) describes, what to do with the following environment data and 

how the results of the action have to be interpreted. A typical rule e.g. is 

Comp-R-N, ber, kul, ren, rin 

which is used for the prefix 'her' to reject the recognition of an affix in the 

words "Herberge", "Herkules", "Herren" and "Herrin". The first part of the 

action describes the class of instruction, which in our example is a 

'compare'-instruction. The next letter 'R' tells the instruction to search at the 

'R'ight boundary, and the last letter 'N' specifies that if a match is found the 

string to be verified is 'N'ot an affix. Other instructions examine the morpheme 

class of adjacent morphemes and test whether the following inflectional affixes 

contain a vowel or similar things. 

The number of rules to verify an affix is somehow dependent on the string 

length of the affix. While long affixes are rather unambiguous and need only few 

rules, affixes consisting of two or three characters often correspond to parts of a 

root, and therefore they need more rules to be verified. Our current affix 

dictionaries are based on some two thousand frequent words including 32 prefixes 

and 57 suffixes. The dictionaries occupy about 2 kbyte. An improved version 

based on a German standard dictionary will have several hundred entries and is 

in progress. 

As the analysis of word structure is partially based on statistical rules, it has 

to be equipped with dictionaries for exceptions that include words which would 

cause pronuncation errors if they were decomposed and pronounced according to 

the rules. Currently, we use two dictionaries for exceptions, one for entire words 

and the second one for stems, i.e. words with their inflectional suffixes stripped 

off. Both lists currently contain only function words used for sentence analysis 

and a few very frequent exceptions. 
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Word structure analysis based on cluster analysis is insufficient as a linguistic 

tool for word decomposition, but it is a fast and very effective tool for purposes 

of speech synthesis. No root lexicon is needed, only a list of the basic clusters 

and an affix dictionary. Decomposition is done in far less time than is used to 

pronounce the word, and the analysis written in assembler needs only 3 kbytes of 

memory. A version written in C is in progress. 

LETTER-TO-SOUND RULES AND WORD ACCENTS 

Due to the preceding word structure analysis, well known letter-to-sound rules 

may be used. We chose a conversion of letters to sounds in two steps. This 

means for vowels, that in the first step only a vowel quality is computed while 

in the second step the same rules are applied to all vowels to determine whether 

the vowel is long or short. 23 rules are needed for the first step and 4 rules for 

the second step. For consonants, most part of the conversion is done in the first 

step with 36 rules, while in the second step 9 rules govern the devoicing of 

voiced fricatives and plosives, the selection of two 'r'-variants and the change of 

"n' to 'ng'. These 72 rules have proved to be sufficient for a conversion based 

on morphemes. 

The generation of word accent patterns is a three stage process. At first, 

with the aid of information provided by affix dictionaries and word structure, it 

is decided which affixes can carry an accent. Then for each root and its 

adjoined affixes, accent patterns are generated. The last step is to combine these 

accent patterns in order to form a word accent pattern for compound words. 

While there are few and simple rules to perform the second and the last 

step, a lot of computation is needed in the first stage to get the accent for 

affixes. The "accent ability" of affixes depends on the order of affixes within a 

word as well as on context rules. Frequently, German affixes in some words may 

carry the main accent and in other words they may have no accent at all. To 

resolve such ambiguities, similar rules as for the affix verification are being used. 
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These rules have the same limitations as the rules for affix verification: currently 

they are based on several thousand words only, but they will be improved. to 

match a complete standard dictionary. 

SENTENCE ANALYSIS 

In the SYNTEX system, the syntactical analysis of a sentence is the 

presupposition for generating its prosody. When the syntactical analysis has 

identified the parts of the sentence, its constituents can be determined. On the 

basis of these constituents or phrases, the prosodic features of the spoken 

utterance are calculated. We decided to use only syntax for prosody, because 

there are considerable difficulties in taking content and context into account. 

The two main reasons for this are, that it is not yet possible to describe and 

detect semantic relations under unrestricted text conditions, and that too much 

processing time would be required to allow real-time text-to-speech conversion. 

Earlier research on German syntax analysis with unrestricted text [4] 

demonstrated processing intervals of several minutes on a mainframe for the 

complete parsing of a single main clause. Most of the time was spent 

determining the parts of speech of content words and detecting the correct 

syntactical relations between the constituents of a sentence. As processing time 

of that order of magnitude is not acceptable for real-time applications, we decided 

to do without a complete syntax analysis. We gained evident savings III 

processing time, because we need not detect the part of speech for every word of 

the sentence, and because detecting one possible syntactical structure for a 

sentence is sufficient. 
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build syntactical phrases 

to control at prosody and coarticulations 

Fig. 3 Sentence analysis 

INCOMPLETE SENTENCE PARSING 

In written German only 612 words form about 60% of normal orthographic text 

[5J. Most of these words are function words to which we assign a valence. 

Valences mark the tendency of a word to be followed by certain parts of speech. 

With the help of function words and their valences sentences are decomposed into 

word groups (see fig. 3), by combining a function word and, dependent on the 

specified valence, some of the following unclassified words. There are 7 types of 
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valences: no valence, and valences over 1, 2 or 3 words, which may be extended 

in a further step by adding trailing unclassified words to the valence group. 

These word groups correspond quite well to the beginning of German nominal 

phrases. 

The problem arising with function words, which can carry either no valence 

or one or more valences, was solved by always assigning them no valence. 

Therefore, in order to determine the final length of a nominal phrase, an 

expansion of the word groups at sentence level is necessary. Looking at a whole 

sentence, sentence level rules are used to guess how far a word group can be 

expanded, provided that the group is marked with an extendable valence. The 

definition of the sentence level rules had to be done carefully, as they depend 

very much on the sort of text which is being processed. We determined our 

rules on the basis of German newspaper texts and found them to fit quite well 

for any kind of text. 

Up to this point the sentence has been decomposed into a sequence of 

marked noun groups with unclassified words between them. In forming groups 

with these unknown words too, we define the groups marked so far to be the 

syntactically relevant phrases of the sentence. 

MARKING ACCENTS ON PHRASE AND SENTENCE LEVEL 

In German nominal phrases, there is a tendency to place the most important 

word of the phrase, which usually carries an accent, at the end. The nominal 

phrases of a sentence are detected by valence assignment to function words. So 

in every phrase detected with the help of valences the rightmost unclassified 

word, which is nearly always a contend word, is assigned a phrase accent. 

The sentence accent can only be carried by a phrase which already has a 

phrase accent. If there is only one phrase accent, it automatically will be the 

sentence accent. If there are two phrase accents, the last phrase will get the 

sentence accent. If :there are more than two phrase accents, the sentence accent 
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is calculated on the basis of the rules given by J. Pheby [6J, which rely on 

regularities in the sequence of German nominal phrases. For example, if there 

are two nominal phrases, one in the dative and the other in the accusative, the 

accusative phrase gets the sentence accent. The cases can be determined by 

analysing the function words and the word suffixes. 

PROSODICS 

At the prosodic level (see fig. 4) our main work concentrated on generating 

an Fq>-contour by rule for a sentence. Therefore only simple timing rules like 

the shortening of the duration of function words are implemented at the moment. 

For the future, modules are planned, that control the speech rhythm depending 

on the speech rate and the number of phrases within a sentence. These modules 

will also consider coarticulations on the phrase and sentence level. 

So at the moment, phoneme duration is determined by table only by 

considering the word structure, which means that sound lengthening occurs if 

there is a word accent. As function words carry no accent in the SYNTEX 

system, they are always shortened to a minimum length. This can be interpreted 

as a rhythmic component on phrase level which occurs in the system's output. 

GENERATION OF AN F~-CONTOUR 

For the generation of an Fq>-contour, we adapted a modified form of the 

hat-shaped pattern strategy proposed by Cohen and t'Hart [7J. For each 

utterance we calculate Fq> by using a logarithmic scale which is measured in Cent 

(doubling Fq> = 1200 Cent). The reference point for this scale is the lowest 

fundamental frequency normally produced in speech (55 Hz). This enables us to 

describe Fq>-values that can be produced by the phoneme synthesizer. 



www.manaraa.com

532 

SETTING THE BASELINE 

In almost any language, there is a gradual fall of FCfJ in the course of an 

utterance. This is often explained by the decreasing air pressure in a speaker's 

lung which results in a diminishing of vocal cord tension [8J. We take account 

of this physiological effect by calculating an FCfJ-baseline which falls gradually 

with 200 cents per second in the first 1.5 seconds of an utterance and after that 

with 50 cents per second. A reduction of the Fq>-fall in the second part of an 

utterance is necessary to prevent a too low FCfJ-value at the end of long 

utterances, that would affect the perception of the produced speech. 

Bun.DINGF~-PATTERNS 

Like Cohen and t'Hart, we build the Fq>-contour of an utterance by adding 

predefined FCfJ-movements to the baseline, in order to construct all perceptually 

relevant FCfJ-movements. We distinguish four FCfJ-movements: 

a steep fall with a fixed slope of 1200 cent per second and the Fq>-change 

limited to 150 cent 

a steep rise with a fixed slope of 1200 cent per second and the FCfJ-change 

limited to 150 cent 

a gradual rise with variable slope and the FCfJ-change limited to 300 cent 

a gradual fall with variable slope and the Fq>-change limited to 300 cent 

Further on, there are two possible constant courses: one at baseline level 

("low"), and the other 300 cent above the baseline ("high"). Frequently occuring 

sequences of FCfJ-movements may be combined to FCfJ-patterns. Among these 

Fq>-patterns is the important "hat" shaped pattern" (low course - steep rise -

high course - steep fall - low course). 
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Fig. 4 Control of prosody and coarticulations 
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APPLICATION OF THE F9) .. PATTERNS 

Changing F(/> at the end of a sentence is important for the perception of the 

characteristics of the sentenc~ The last phrase of an interrogative sentence is 

assigned the F(/>-pattern "low course - steep rise - high course" and the preceding 

phrase has the pattern "high course - steep fall - low course". The two last 

phrases of a terminating sentence get the patterns "low course - steep rise - high 

course" and "high course - steep fall - low course". that means, that at the end 

of sentences there is always a hat shaped pattern either inverted or not. While 

developing the final patterns, we found that perception is increased by a slight 

modification of the patterns: a gradual fall or rise has to be added to the last 

syllable of a terminating or interrogative sentence respectively. 

All preceding phrases of a sentence, if there are any, are handled by 

assigning the pattern "low course - steep rise - high course" without regard of 

the sentence characteristics. In the special case of a sentence consisting of only 

one phrase, this phrase is assigned the pattern "low course - steep rise -high 

course" for an interrogative sentence, or "high course - steep fall - low course' for 

a terminating sentence. 

CURRENT STATUS 

SYNTEX is a software system designed for microprocessors. Most routines 

have been written in assembler and are running on the Motorola 68XX 

microprocessors family. The software currently needs about 30 kbytes including 

10 kbytes for dictionaries. Conversion of text to speech is done in less than 30% 

of the time used to pronounce the text. A 'C' version of the system is in 

progress. 

While the development of algorithms at the word level is almost finished, the 

dictionaries are rather preliminary yet and have to be updated to match the 

whole German language. Analysis on sentence level and generation of intonation 
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contours will be rermed, too. Control of the prosodic features sound duration 

and intensity is planned. 

Although up to date no high quality phoneme synthesizers for the German 

language are available, SYNTEX will not be expanded by the development of a 

phoneme synthesizer; only available phoneme synthesizers will be used to fill the 

gap between the phonemes and the spoken output. Up to now, driver programs 

for e.g. the Votrax VS6-G and the Votrax SC01 have been developed. 
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last but not least - for concatenation. The quality and intelligibility of the 

synthetic signal is very good; in a subjective test the median word intelligibility 

dropped from 96.6% for a LPC vocoder to 92.1% for the demisyllable synthesis, 

and the difference in quality between the demisyllable synthesis and ordinary 

vocoded speech was judged very small. 
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1. PHONETIC UNITS AND THE PROBLEM OF CONCATENATION 

Concatenation is a central problem in any system for speech synthesis by 

rule. It provides the link between the phonetic level, where the information to 

be synthesized is represented as a sequence of discrete phonetic and/or linguistic 

units, and the parametric level where the information is coded (Fig. 1). 

In practice concatenation is controlled by a set of rules that act upon a data 

base of speech data. This data base may contain experimental data, such as a 

table of formant frequencies, but it may also consist of (parameterized) natural 

speech. The design of the concatenation component of a speech synthesis system 

is determined by a tradeoff between the number and complexity of the 

concatenation rules on the one hand and the size of the memory required for the 

data base on the other hand. The most important question in this respect is 

that of the phonetic units to be applied. 

Viable phonetic units for speech synthesis are words, syllabic units, and 

phonemic units. Words as units for synthesis require a minimum of rules but a 

maximum of data memory; they are not realistic for synthesis of large or 

unlimited vocabularies. Phonemes, on the other hand, require a minimum of data 

memory since their number is limited to about 40, and their duration is rather 

short. It is well known, however, that phonemes cannot be simply concatenated; 

due to coarticulation effects, the information relevant for understanding speech is 

realized in the transitions between phonemes, and a great number of 

(language-dependent) concatenation rules are necessary to realize the transitions 

and to provide an acceptable quality and intelligibility. A lot of human work is 

thus required to establish and to test these rules (Allen, 1976; Klatt, 1980); 

nevertheless, the quality of the resulting speech is limited. 

Considerable efforts have therefore been made towards designing speech 

synthesis systems that use larger phonetic units. In such systems many of the 

transitions and coarticulation effects are intrinsic to the stored data and need no 

longer be explicitly generated by rule. The number of concatenation rules 

necessary can thus be drastically reducedj this reduces the overall system 
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complexity (in spite of the increase in data memory) and improves the quality of 

the synthetic speech at the same time, since any rule, even a very sophisticated 

one, can never completely replace natural speech. Diphones, i.e., units consisting 

of transitions between adjacent phonemes, have been applied in various systems, 

such as the one by Olive (1980) for American English, the one by Emerard (1977) 

for French, or the one by Endres and Wolf (1980) for German. 

Besides diphones, syllabic units supply a viable data base for high-quality 

speech synthesis by rule. It has been shown that the influence of coarticulation 

strongly diminishes when a syllable boundary is crossed (Fujimura, 1981; Ohman, 

1966). The number of complete syllables, however, is still too large (and, in 

addition, difficult to determine) to permit synthesizing an unlimited vocabulary 

with a reasonably small amount of memory. The number of elements, however, 

is drastically reduced when a syllable is split up into two demisll11ables (DSs), as 

first proposed by Fujimura (1975, 1976a). 

How can we suitably split up a syllable into two demisyllables? Usually a 

syllable is defined to consist of the nucleus (in German this is always a vowel or 

a diphthong) which is preceded and followed by a number of consonants, the 

so-called consonant clusters (CCs). The consonants preceding the syllabic nucleus 

form the initial consonant cluster, and the consonants following the nucleus 

represent the final consonant cluster. According to Fujimura's proposal a 

syllable is now split up into demisyllables in such a way that the initial CC and 

the beginning of the syllabic nucleus form the initial demisll11able, whereas the 

remainder (i.e., the second part of the nucleus and the final CC make up the 

final demisll11able. 

As already mentioned, demisyllables as units of speech processing were first 

proposed by Fujimura both for speech recognition (Fujimura, 1975) and for speech 

synthesis purposes (Fujimura, 1976a), and an experimental system for demisyllable 

synthesis of American English was designed and implemented (Fujimura et aI., 

1977; Macchi, 1980; Browman, 1980). For German demisyllables were taken up 

by Ruske and Schotola (1978) in connection with a speech recognition system; for 

speech synthesis they were first used bv Dettweiler (1980, 1981). 
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There are two advantages of the demisyllable approach. First, due to 

linguistic constraints, the number of demisyllables actually used in a language is 

only a small fraction of the number of demisyllables one could think of just by 

arbitrarily combining consonants and vowels. Second, since the experiments 

suggest (Fujimura et aI., 1977; Dettweiler, 1980) that the boundaries of the 

demisyllables coincide with temporal minima of coarticulation effects, a small 

number of relatively simple rules will be sufficient to concatenate the individual 

elements. In this paper we will show that about 18 rules and about 1650 

demisyllables requiring a data memory of less than 0.5 MByte is sufficient to 

synthesize (nearly) unrestricted German text. 

The remainder of this paper is organized as follows. In Sect. 2 the complete 

demisyllable inventory will be established, and we will develop the concatenation 

rules for the syllabic nucleus which enable us to synthesize monosyllabic words. 

In Sect. 3 suitable reductions of the inventory will be discussed. Section 4 

describes a major part of the concatenation rules for CCs in order to synthesize 

words with more than 1 syllable. Section 5 finally presents the results of 

intelligibility tests for a list of about 180 frequent meaningful German words. 

2. THE DEMISYLLABLE INVENTORY. SYNTHESIZING MONO

SYLLABIC WORDS 

A representative list of demisyllables for the German language was compiled 

by Ruske and Schotola (Schotola, 1980, 1984; Ruske, 1984; Ruske and Schotola, 

1978) based on a list of the 8000 most frequent German words (Meier, 1967) and 

other investigations (cr. Schotola, 1984). The initial consonant clusters contain 

from zero to three consonants, whereas up to 5 consonants may be encountered 

in a final CC. Nevertheless, the number of CCs is extremely limited due to 

linguistic constraints: there are only 47 initial and 159 final CCs, a list of which 

is given in this volume (Ruske, 1984). Concerning the syllabic nuclei, 23 vowels 

and 3 diphthongs must be dealt with; a list is given in Table 1. 
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LONG VOWELS 
CLosed 

. 
¢: e: 1 : 0: u: ':/: 

Tense a: 
Open €: 

SHORT VOWELS 
Tense CLosed 

. 
¢ e 1 0 u ':/ 

a 
Open € I ~ U ~ Y 

Lax 
schwa a 

DIPHTHONGS ae a O :J¢ 

Table 1. German vowels and diphthongs. Mter Martens and Martens (1965). 
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Contrary to speech recognition, where syllabic nuclei and CCs can be treated 

separately (Ruske and Schotola, 1978), the transitions between the syllabic nuclei 

and the CCs are essential for the quality of the synthesized speech; they cannot 

be generated by rule and must thus be available as stored data. That means 

that the number of elements required for the complete demisyllable inventory * 
amounts to 

NC = 26.51 initial DSs + 26.159 final DSs 5460. 

This number is considerable so that efforts are necessary in order to reduce the 

number of elements without degrading the resulting synthetic speech. This 

question will be further dealt with in Section 3. 

Each DS now consists of a CC and part of a syllabic nucleus. 

Concatenation of DSs at boundaries within the syllabic nuclei and within CCs are 

principally different tasks and must be treated by separate rules. For 

synthesizing monosyllabic words, we only need to concatenate demisyllables within 

the syllabic nucleus. This problem shall thus be treated first. 

Since coarticulation shows a strong tendency toward anticipating future 

articulatory gestures (Ohman, 1966; Fujimura, 1981), it is adequate to locate the 

demisyllable boundary within the first part of the vowel. As the experiment 

shows, Fujimura's proposal (1976a) to place the boundary 50 ms after the 

beginning of the vowel can be applied to German as well (Dettweiler, 1980). 

This means that all the problems of vowel duration as well as the question of 

the diphthongs are confined to the final demisyllables. This leads to 

concatenation rule #1 (Fig. 2): 

* The number of initial CCs rises from 47 to 51 due to four CCs which do not 

occur in word-initial position, but must be added to the set of initial CCS due to 

rule SR2. for more details see Section 4.1. 
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I 100 ms I. Time 

STROLCH /ftroL~/ 

Fig. 2 a-c. Concatenation within the syllabic nucleus (rule CR!). (a) Initial 
DS, (b) final DSj (c) complete word after concatenation. The 
example shows the word "Strolch" ("lounger")j /Itr:>ISc/ -- > 
/ Itr:> * / II /* lr;/. In this and the following figures, the thick 
vertical line indicates the interconnection pointj the smoothing 
interval is indicated by the dashed lines. The asterisk in the 
phonetic transcription refers to the position of the syllabic nucleus. 
All the signals were synthesized from the demisyllable data base 
(speaker HTD) using an LPC vocoder. 
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An initial demisyllable and a final demisyllable are concatenated after the 

first 50 ms of the vowel. Parameters are smoothed within ± 10 ms around 

the interconnection point. (CR1) 

Like the system for American English (Fujimura et aI., 1977), our system 

smoothes the transition by means of interpolation; i.e., frames within the 

smoothing area are obtained by interpolating between the parameter values of the 

adjacent frames on either side of the interpolation interval (which pertain to 

different demisyllablcs). A smoothing interval of ± 10 ms around the 

interconnection point has proved adequate. 

3. INVENTORY REDUCTION 

To reduce the number of demisyllables, two ways seem feasible: 1) vowel 

substitution, and 2) further splitting of consonant clusters. Both these possibilities 

have been implemented in our system. Three inventory reduction rules (RRI-3) 

and one splitting rule (SRI) have been developed for this purpose. Contrary to 

the concatenation rules that act on the parametric level, inventory reduction rules 

and splitting rules act on the phonetic level; they influence the selection of the 

demisyllables for a given input string of phonetic symbols. 

3.1 VOWEL AND DIPHTHONG SUBSTITUTION 

Inventory reduction rule #1, dealing with diphthongs, is a direct consequence 

of rule CRI: 

Given a diphthong, ORI states that most of it will be located in the final 

DS. The initial DS of the diphthong can thus be replaced with the initial 

DS containing the initial vowel of the diphthong. (RRI) 

In standard German this is possible since the initial vowel of the diphthong is 
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always well pronounced. If the substituted initial DS and the final DS which 

contains the diphthong do not match perfectly, this does not matter since the 

audible result of this mismatch will only be a further diphthongization. 

The second rule refers to the short tense vowels which are always unstressed 

in German (and rather rare). Usually in German the long (stressed) vowels are 

tense, and the short vowels (whether stressed or unstressed) are lax and thus 

more open. These two categories of vowels must remain separated. The short 

tense vowels, however, can be derived from the corresponding long ones according 

to reduction rule #2: 

A 8hort ten8e vowel i8 obtained by concatenating the demi8yllable8 with the 

corre8ponding long vowel8 and adequately decrea8ing the duration of the 

vowel. 

(RR2) 

The correspondence in German between the features "long" and "tense" on 

the one hand and "short" and "lax" on the other hand leads to a number of 

additional, well-known similarities between German vowels (Endres, 1971; Hess, 

1972, 1976): /1/ and /e:/, /Y/ and /~:/, /u/ and /0:/ as well as /a/ and /a:/. 

In speech recognition, for instance, these vowel pairs become almost 

indistinguishable when duration is omitted as a cue (Hess, 1972). As the 

experiment shows, however, these vowel pairs are still somewhat different. 

Extending rule RR2 to them would thus lead to an undesirable diphthongization 

except for the case of /a/ and /a:/ where applying the rule does not degrade the 

synthetic speech. Hence, the two rules RRI and RR2 reduce the number of 

vowels from 23 to 15 and eliminate the diphthongs from the initial demisyllables. 
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3.2 SPLITTING UP CONSONANT CLUSTERS. RUDIMENT AND 

SUFFIX 

According to a later paper by Fujimura (1976b), certain consonants, when 

occurring in final position of a DS, may be split off from the DS and form 

separate units, the so-called af/izes. According to Fujimura's proposal these are 

the consonants /0/, lsi, /t/, /z/, and /d/. Whereas for English this indicates a 

considerable inventory reduction, the effect is rather small for German since of 

these consonants only /s/ and /t/ occur in final position (the others do not exist 

in German, or they only occur in initial position). The fact that such a splitting 

is possible at all, however, indicates that fricatives and stops in final position, like 

vowels in the syllabic nuclei, represent a natural co articulation barrier; i.e., sounds 

following this barrier do not (substantially) affect previous sounds. Looking for a 

different splitting scheme which is more efficient for German, Dettweiler (1980, 

1981), arrived at the principle of rudiment and suffix (splitting rule #1; Fig. 3): 

If a final demisyllable ends with /t/, /s/, /f/, /I/ or a combination 

thereof, this part is split of/ and separately treated as a suf/iz. The 

remainder is defined to be the rudiment. (SRI) 

It is obvious that /t/ and /s/ can be treated in a common way since their 

places of articulation - and with it the anticipatory coarticulation effects - are 

almost identical. In addition, the experiments have shown that there is no loss 

of intelligibility or quality when the rule is extended to /f / and / I /. 

In practice the rudiment * is formed by uttering a demisyllable that contains 

* According to the definition given in rule SRI, the term rudiment is used in 

connection with final demisyllables. For reasons of simplification, we also use this 

term in connection with final consonant clusters. To distinguish between a 

rudiment and an ordinary final DS or ee, any rudiment is marked by a c.' at 

the end. 
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100 ms 1-
Time 

@] ~ ~. 
I ' ; , 
• ! · . 
• ! 

l'a*1 I*aml 

It I 

IJI 

Fig. 3 a-c. The principle of rudiment and suffIx. (a) Ordinary consonant 
cluster: example /*am/. (b) Rudiment and suffIx: the demisyllable 
/*amt/ is split up into the rudiment /*am./ and the suffix /t/ 
(the dotted line represents the boundary). (c) Concatenation using 
rudiment and suffix (rule CR2): /*am./ II /1/ -- /*amI/. The 
difference between the ordinary consonant cluster and the rudiment 
is clearly seen. The rudiment is shorter anp ends more abruptly. 
In this and the following figures, signals drawn with dotted lines 
represent demisyllables that are needed to complete the word, but 
do not pertain to the demisyllables involved in the particular rule 
being explained. 
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the remainder of the consonantal cluster [without the suffix consonant{s)] plus a 

final /t/ and then removing the /t/ together with the pertinent silence before the 

burst (Fig. 3b). Since the rudiment contains all the coarticulatory influences by 

the following /t/, it is easy to see that the rudiment and the final DS containing 

an identical consonant cluster without the /t/ are different (cf. Fig. 3a,b). The 

concatenation rule for a rudiment and its suffix is simple: 

A rudiment and a 8uf fix are directly concatenated without any 8moothing. 

(CR2) 

Applying the principle of rudiment and suffix thus leads to inventory reduction 

rule #3: 

A final con8onant clu8ter i8 8plit up into a rudiment and a 8uffix 

whenever p088ible, i.e., when it end8 with /f/, /8/, /1/, /t/ or a 

combination thereof. 

(RR3) 

This rule reduces the number of (ordinary) final consonant clusters from 159 to 

23; in addition we obtain 23 rudiments and 26 suffixes (any combination of /f/, 

/s/, /t/, and I I I that occur III the final DSs of the full-size inventory). Table 2 

contains a list of the reduced inventory of final CCs, rudiments, and suffixes. 

The total number of elements of the reduced inventory now amounts to 

NR = 51·15 initial DSs + 23·19 final DSs + 23·19 rud. + 26 suff. = 1665 

With an average duration of 0.3 s per element, the memory required for this 

inventory will be less than 0.5 MByte if a vocoder at or below 7.2 kbits/s is 

used. 
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4. SYNTHESIZING POLYSYLLABLE WORDS 

Polysyllabic words contain intervocalic consonant clusters between subsequent 

syllabic nuclei. This requires additional rules for the concatenation of consonant 

clusters (Dettweiler, 1980, 1984). The procedure is carried out in two steps. 

First (Sect. 4.1) an intervocalic CC is split up into a final CC followed by an 

initial CC, and the CCs are joined to the respective syllabic nuclei to form 

demisyllables. In the second step (SectA.2) the two DSs are concatenated. As in 

Sect. 3, the three splitting rules described in Sect. 4.1 act on the phonetic level 

where they define the syllable boundaries; the concatenation rules presented in 

Sect. 4.2, on the other hand, operate on the parametric level. 

4.1 SPLITTING UP INTERVOCALIC CONSONANT CLUSTERS 

The first rule (splitting rule #2) is necessary for the demisyllable principle to 

be applicable at all. 

Given an intervocalic consonant cluster, this cluster must always be split 

up into a valid final consonant cluster and a valid initial consonant 

cluster. (SR2) 

A CC is regarded as valid if it is contained in the demisyllable inventory. 

If rule SR2 does not yield a solution, the inventory must be enlarged* so 

that a viable splitting can be provided. In German this applies to the four 

consonant "clusters" lsi, lxi, 1r;/, and 1'1l1 which occur in final and intervocalic 

position, but not at the beginning of a word; these clusters must be added to the 

* In order to enlarge the DS inventory, one must enter the new demisyllable(s) as 

specified in Section 5.1. This requires manual interaction and cannot be done at 

the same time as the (automatic) synthesis. 
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initial demisyllable inventory. IT rule SR2, on the other hand, provides several 

solutions, the following experimental rule is applied: 

II SR2 provide8 more than one tJalid 8olution, then the one i8 taken where 

a8 many con8onant8 a8 p088ible are grouped within the initial con8onant clu 

This experimental boundary need not be identical to the syllable boundary 

requested by morphologic constraints (which, by the way, can be different for 

different words containing the same intervocalic CC). Inmost cases, however, the 

two boundaries are identical. The rule takes into account the anticipatory effect 

of coarticulationj a loss of quality was not registered when a demisyllable 

boundary, as established by Rule SR3, differed from a given morph boundary. 

The rule thus represents an adequate means to split up intervocalic CCs without 

requiring morphologic knowledge at this level. 

A special case is given when the intervocalic CC only contains one 

consonant: 

II the intertJocalic CC contain8 one con8onant only, and il thi8 i8 neither 

a plo8ive nor /8/, /1/, or /1/ (i.e., if it i8 a 8u8tained con8onant other 

than a 8uJliz), then thi8 con8onant pertain8 to both the initial and the 

final demi8yllable8, and rule SR3 doe8 not apply. (SR4) 

This rule actually switches the system into a diphone mode. 

The three splitting rules SR2-4 enable the system to split up any intervocalic 

CC into a final CC followed by an initial CC and to combine them with the 

preceding and subsequent syllabic nuclei to form a final DS followed by an initial 

one. 
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4.2 CONCATENATING CONSONANT CLUSTERS 

The way in which an intervocalic CC is concatenated strongly depends on 

the consonants involved. Three principally different cases must be regarded: 1) 

the intervocalic CC contains at least one consonant, and there is no plosive at 

the interconnection point (Sect. 4.2.1); 2) the intervocalic CC is empty, i.e., two 

vowels that do not represent one of the diphthongs immediately follow each other 

(Sect. 4.2.2); and 3) the intervocalic CC contains one or several plosives at the 

interconnection point (Sect. 4.2.3). 

4.2.1 THE INTERVOCALIC CC IS NOT EMPTY AND DOES NOT 

CONTAIN A PLOSIVE AT THE INTERCONNECTION POINT. 

This case IS handled by three concatenation rules which are rather 

self-explanatory. The most important point is that the anticipatory co articulation 

effects within the initial DS are preserved; i.e., parts of the initial DS which are 

perceptually important must not be dropped nor smoothed out. The interval to 

be smoothed is thus situated asymmetrically around the interconnection point. 

If the diphone mode applies, i.e., if the intervocalic CC contains one 

consonant other than / s /, / f /, /1/, or a plosive, then the demisylla,bles are 

concatenated by cutting off the onset of the consonant in the initial DS 

and as much of the consonant in the final DB as necessary to obtain 

C01Tect consonant duration. Smoothing is per formed starting 30 ms before 

and ending at the first frame after the interconnection point. (CR3) 

If the initial DS begins with /s/, Iff, /1/, /z/, or lvi, and if the final 

DS does not end with one of these consonants, then the coarticulation 

ef feets between the demisyUables correspond to the ca8e of Rule CR2. 

Therefore the final DS is replaced with the pertinent rudiment, and the 

initial DS is auuended without smoothina. (CR4) 
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As this rule shows, the rudiment is not only suitable for inventory reduction; it 

can also be advantageously applied in such context where it represents a quasi 

natural way of coarticulation. 

In all cases where rules CR3 and CR4 do not apply, the demisyllables are 

concatenated in such a way that the final part of the final DS (about 60 

ms) and the onset of the initial consonant of the initial DS are dropped. 

Smoothing is performed in the same manner as in rule CR3, i.e., within 

-30 and +10 ms from the interconnection point. (CR5) 

Figures 4-6 show examples for these rules. 

It is obvious that neither of these rules can be applied if there is a plosive 

at the interconnection point, i.e., if the initial DS starts or the final DS ends 

with a plosive. If a plosive, however, occurs only in internal position of aDS, 

then it is totally embedded in that demisyllable and does not pose any problems. 

For instance, the German word "Anspruch" ("claim"; see Fig. 5) is concatenated 

as 

/,anJprux/ < -- /'a*/ II /*an./ II /Jpru*/ II /*ux/ 

according to the rules CRt and CR3. The asterisk in the phonetic transcription 

of the demisyllables indicates the position of the syllabic nucleus, and the sign 

"II" stands for concatenation. 

4.2.2 THE CONSONANT CLUSTER IS EMPTY 

In this case two syllabic nuclei form a vowel cluster. A vowel cluster has to 

be distinguished from a true diphthong; the diphthong per definition represents a 

single syllabic nucleus (although in German a diphthong is orthographically 

represented by two letters), whereas a vowel cluster always represents a syllable 

with an empty final CC followed by a syllable with an empty initial CC. 

Acoustically such a cluster is realized bv a rather long and slow transition; it can 
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1 100 ms I. Time 

EMMA Isma:1 

.' , .' , .' , .' , 
" , .' , :: : 

Fig. 4 a-c. Concatenation of consonant clusters in diphone mode (rule ORa). 
(a) First syllable; (b) second syllable; (c) complete word after 
concatenation. The final consonant Iml of the nrst syllable was 
shortened by 120 ms prior to concatenation. Example: rem/ /I 
/ma* / from the name "Emma" /,ema/. 
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I 100 ms I Time 

ANSPRUCH l'anJpruxl 

I*uxl 

Fig. 5 a-d. (a-c) Concatenation of consonant clusters by rudiment (concatenation 
rule CR4). Example: j*an·1 II I Ipru* I --> j*anIpru* I from 
"Anspruch" ("claim") /,anIprux/; (d) DS with ordinary CC j*anl 
for comparison. The thick vertical line indicates the interconnection 
point; there is no smoothing since a rudiment is involved. 
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1 100 ms I. Ti me 

LERNEN ILsrnanl 

Fig. 6 a-c. Standard case of consonant cluster concatenation (rule CR5). 
Example: /*r.rl II Inr.* 1 -- /*r.rnr.* 1 from "lernen" ("to learn") 
Ilr.rnr.n/· 
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easily be synthesized by extended interpolation. 

In the case of a vowel cluster the final DS consists of the first vowel 

followed 6y an empty final CC; the initial DS consists of the second vowel 

preceded 611 an emptll initial CC. The two components are concatenated in 

such a wall that the last 40 ms of the final DS are dropped. Smoothing 611 

linear interpolation is performed within ± 30 ms of the interconnection 

point. 

(CR6) 

4.2.3 THE INTERVOCALIC CONSONANT CLUSTER CONTAINS 

ONE OR SEVERAL PLOSIVES AT THE DENUSYLLABLE 

BOUNDARY 

German has 6 plosives: Ibl, Idl, Igl, IpI, Itl, and Ik/. All of them may 

occur in initial position whereas plosives in final position are always voiceless. In 

intervocalic as well as in final position two plosives may immediately follow each 

other. 

Concatenating intervocalic CCs with plosives at the demisyllable boundary 

represents the most delicate case of demisyllable synthesis. The problems mainly 

result from the fact that plosives in initial and in final position are differently 

realized. A plosive in final or intervocalic position is characterized by 1) the 

sequence of the preceding transition, 2) the silent interval before the burst (which 

may be substituted by a voice bar in the case of a voiced plosive), 3) the burst, 

and - in nonfinal position - 4) the subsequent transition. In initial position, 

however, a (measurable) silent interval before the burst does not exist; it must 

therefore be substituted when an initial DS starting with a plosive is used for 

synthesizing an intervocalic CC. Five concatenation rules (CR7-H) are necessary 

to cover this task (Dettweiler, 1981, 1984). We first have to look at the position 

of the plosive (in the case of several subsequent plosives at the DS boundary we 
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regard the last one). Three cases have to be distinguished. 

I) The plosive pertains to the initial DSi appending it to the final DS, however, 

will result in a valid final CC as well. This case is also assumed to apply 

if the plosive is voiced (and therefore does not occur in final position) and 

the pertinent voiceless plosive (for instance, Ipi instead of Ibl) can be 

appended to the final DS. 

2) The plosive pertains to the initial DS and cannot be appended to the final 

DS. 

3) The plosive pertains to the final DS and cannot be assigned to the initial 

DS. 

Cases 1 and 2 must be further subdivided. In case 1 we must distinguish 

according to whether a) the plosive is voiceless, or b) the plosive is voiced; in 

case 2 we must look whether the final DS ends with another plosive or not. 

The resulting five concatenation rules CR7-11 are not self-explanatorYi 

discussing them in detail is not possible in this paper due to lack of space. 

Hence the discussion will be confined to case la (concatenation rule CR7) which 

IS another good example how the rudiment can be advantageously applied. 

If the initial DS starts with a voiceless plosive that can also be assigned 

to the final DS, the plosive is doubled, i.e., it is assigned to both the final 

and the initial DSs. The (extended) final DS is then replaced by the 

pertinent rudiment, and the initial DS is appended without smoothing.(CR7) 

The performance of this rule is illustrated using an example (Fig. 7) Rule SR2 

splits the intervocalic CC Irkl of the German word "Wirkung" ("effect") into the 

final CC Irl and the initial CC Ik/i this leads to the task of concatenating the 

DSs /*Ir / and /ku* I. It is obvious that the silent interval before the Ik/ is not 

contained in either of these DSSi it must thus be inserted. The concatenation 



www.manaraa.com

560 

I 100 ms I Time 

WIRKUNG /vlrku~/ 

Fig. 7 a-d. Example of plosive processing (rule CR7). The rule applies when a 
voiceless plosive that can be assigned to both the initial and the 
final DSs occurs at the DS boundary. (a-c) Example: j*Irk.1 " 
Iku* I -- /*Irku* I from "Wirkung" ("effect") Ivlrkuflli (d) DS 
with ordinary CC /*lirkj for comparison. Note that the Ivl in 
German represents a glide rather than a fricative. 
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/*Irl " "silence" II Iku* I -- /*Irku* I , 

however, is not a good solution since the coarticulatory influence of the Ikl on 

the demisyIIable /* r I is disregarded. If we concatenate the final DS /*Irkl 

/*Irkl " Iku* I -- /*Irku* I, 

contains both the silent interval and the coarticulatory influence of the Ikl on 

the /*Ir/. However, the burst of the Ikl is now realized twice; it must thus be 

removed from one of the DSs, preferably from the final one. In this case, 

however, the beginning of the burst in the final DS must be exactly measured 

and marked. Of course this is undesirable. 

A better solution is given when the rudiment /*Irk.1 is taken instead of the 

true final DS /*Irk/. In the rudiment /*Irk.1 the speaker is prepared to utter a 

It I subsequently to the Ikl so that the burst of the Ikl is very short (Fig. 7b). 

Removing the burst of the Ikl in the rudiment is thus unnecessary; if it is 

concatenated with the burst of the Ikl in the initial DS Iku* I, the two bursts 

are perceptually merged into one with slightly greater duration which only 

emphasizes the voiceless character of the plosive (Delattre, 1968). Therefore the 

concatenation 

/*Irk·1 II Iku* I -> /*Irku* I , 

as specified by rule CR7, represents the optimal solution. 

o. ACOUSTIC REALIZATIONS AND INTELLIGmn.ITY TESTS 
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5.1 ACOUSTIC REALIZATION 

An experimental system was realized using a 12th-order standard LPC 

vocoder with a constant frame interval of 10 ms and a signal sampling frequency 

of 10 kHz. Besides the 12 P ARCOR coefficients which were available in 

unquantized form for the experiments, amplitude and normalized fundamental 

frequency were stored. 

In principle it is not necessary to store fundamental frequency in a speech 

synthesis system since any prosodic effect of linguistic significance, regardless 

whether it influences amplitude, fundamental frequency, or duration, must be 

generated by a special rule system. Microprosodic effects, however, such as small 

F 0 inflections before and after plosives (which are rather difficult to be controlled 

by rule), as well as intrinsic pitch of vowels can be covered this way at the cost 

of a modest increase of the memory required (Dettweiler, 1980). AB the 

experiments have shown, the use of microprosody as a stored parameter not only 

increases the naturalness of the synthesized speech, but also its intelligibility 

(Dettweiler, 1982). 

For data acquisition the demisyllables were embedded in two-syllable 

meaningless words of the form /<initial DS>tYr/ and /gYt<final DS>/; the 

demisyllables were always in stressed position except for the demisyllables 

containing a schwa which were recorded in the form <initial CC> te:r/ and 

/ge:t <finaICC>/ in unstressed position. The data were LPC analyzed using a 

20-ms Hamming window and the autocorrelation method of linear prediction 

(Markel and Gray, 1976). F 0 was determined by autocorrelation analysis of the 

LPC residual (Wagner, 1981); the influences of word prosody were removed from 

the F 0 contour, and the values of F 0 were normalized in order to yield equal 

values at the interconnection points within the syllabic nuclei. The DSs were 

then manually extracted using a display program and an interactive segmentation 

procedure. 
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5.2 INTELLIGmILITY TESTS 

A first test was carried out to investigate whether the use of rudiments and 

suffixes decreases intelligibility. For this test meaningless words of the form 

Igaa./ii/<suffix>1 were offered to the listeners; the single consonants It/, If I , 
lsi, and I I I were used as suffixes. In a control experiment (which covered a 

part of the material) the same words were presented in a quasi-natural 

environment, i.e., LPC-analyzed and resynthesized by the same vocoder without 

further processing. The test showed systematic confUSIons between If I and lsi 
which were mainly due to the high-frequency band limitation (5 kHz) of the 

vocoder. The two phonemes I I I and It I were clearly intelligible. 

The main intelligibility test was carried out with a phonetically balanced list 

of 179 words (Dettweiler, 1984) pertaining to the 1000 most frequent German 

words (Meier, 1967; Ruske and Schotola, 1978); 9 meaningless words were added. 

The listeners were asked to exactly transcribe (phonetically or orthographically) 

what they heard; they were further told that there was a minority of meaningless 

words in the list (but not how many); so they could feel free to declare any 

word meaningless when they did not clearly understand it. In a control 

experiment the same words were offered as LPC-analyzed and resynthesized 

speech. 

In the evaluation the meaningless words were excluded, and the transcription 

errors were counted with reference to the number of words, i.e., a word was 

regarded as wrong even when the transcription error was confined to a single 

phoneme. The result was very encouraging: for 18 listeners the median rate of 

correctly transcribed words was 92.5% for the demisyllable-synthesized speech and 

96.6% for the vocoder alone. The median deviation from this value was 4.1%, 

and the median intelligibility loss per listener for the demisyllable-synthesized 

speech with reference to the vocoded speech was 3.4%. A number of errors were 

again due to the LPC vocoder, some more errors were due to incorrect 

demisyllable extraction and segmentation, particularly in connection with weak 

fricatives, and some additional errors might be due to the speaker who was not a 
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professional speaker but one of the authors (HTD). 

In summary, this test clearly shows that the degradation of intelligibility due 

to the concatenation by rule is almost negligible. This result is underligned by a 

subjective quality test where the subjective ranking of quality on a 10-rank scale 

(from "completely unnatural and unintelligible" to "fully natural") differed only by 

0.3 points for synthetic and vocoded speech. 

o. SUMMARY AND CONCLUSIONS 

The concatenation component of an experimental speech synthesis system by 

rule was presented which uses demisyllables as phonetic units. The component 

consists of a rule framework and a data base with parameterized natural speech; 

it converts text given as a string of phonemes into a stream of parameter frames 

which control an LPC vocoder. The rule framework for demisyllable 

concatenation comprises 4 rules for splitting up the intervocalic consonant clusters 

into demisyllables, 3 substitution rules for demisyllable inventory reduction, and 11 

concatenation rules. The data base comprises 1665 demisyllables which need less 

than 0.5 MByte of memory when used in conjunction with a 7.2-kbitfs vocoder. 

The quality of the synthetic speech was found nearly undistinguishable from 

vocoded speech using the same vocoder as the synthesis system; the degradation 

in word intelligibility (median value: 3.1%), compared to the vocoded speech, is 

rather small. Most of the errors found in understanding the synthetic speech 

were due to the LPC vocoder and to the stored demisyllable data, but not to the 

rules. 

Future work thus will first aim at improving the quality of the vocoder in 

connection with the stored data. Since this kind of vocoder application needs a 

sensitive, high-quality vocoder rather than a robust or a fast one, complex speech 

analysis methods with high computing effort can be apJ;>lied during the data 

acquisition phase. In particular, a signal bandwidth of 7 kHz requiring a 

sampling frequency of 16 kHz will eliminate the systematic confusions between the 
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fricatives If I and lsi present in the actual 5-kHz system, and a 

variable-frame-rate vocoder (Heiler, 1982) permitting a minimum frame rate of less 

than 5 ms without increasing the overall amQunt of memory will particularly 

improve the quality of synthetic stop consonants. 

The question of prosody has been kept apart from the problem of 

concatenation as completely as possible. Microprosody, however, which influences 

the speech signal on a short-time basis very much alike to that of co articulation, 

has been taken into account by adding normalized F 0 values to the stored data. 

On the syllabic level prosodic rules are necessary only to separate stressed and 

unstressed syllables. Since the whole material (except those DSs containing a 

schwa) was recorded using stressed syllables, one primitive rule (which has not 

been discussed in this paper) is necessary to reduce stressed demisyllables to 

unstressed ones whenever needed. All other questions of prosody must be dealt 

with at levels above that of concatenation. 

The work described in this paper concentrates on the problem of 

concatenation, and in our opinion the experiments have shown that the use of 

demisyllables as phonetic units for speech synthesis solves the problem of 

concatenation to such an extent that the contribution of the concatenation 

component to the overall degradation of the quality and intelligibility of the 

synthetic signal becomes almost negligible. 
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INTRODUCTION 

Machines for the automatic recognition of spoken words are now available. 

They perform well in a speaker-dependent mode on vocabularies of hundreds of 

words. Some of them may operate in a speaker-independent mode on more 

limited vocabularies. Some results have been obtained on the recognition of 

connected words for limited tasks, mostly in a speaker-dependent way [l,2}. 

Interesting results have also been achieved in researches on continuous speech 

in a speaker-dependent mode [3J or on highly constrained tasks in a 

speaker-independent mode [4}. 

Most of the systems proposed so far take advantage of the redundancy of 

the protocols they use. The most difficult and unsolved problems arise when 

tasks have little redundancy or when speaker-independence is required on complex 

tasks. Examples of such complex tasks are the recognition of letters and digits 

(isolated or connected) or of large vocabularies. In these cases, the use of a large 

variety of acoustic properties extracted with specific signal processing algorithms 

seem to be promising [5,6J. 

In many eases, acoustic property extraction is context-dependent. 

Context-dependencies impose precedence relations on the extraction processes. For 

example (see Demichelis et aI. [7J for details), formant pseudo-loci are important 

cues for the recognition of plosive consonants in a Consonant Vowel (CV) or in a 

VC context, but their extraction can be performed only after having hypothesized 

the existence of a plosive sound before or after a vowel and having detected the 

voice onset interval and the formant loci of the vowel. Kopec [8J in a recent 

report on the speaker-independent recognition of unvoiced plosive consonants at 

the beginning of a syllable, has shown that the point of consonant release has to 

be detected before applying efficient recognition algorithms. Furthermore, acoustic 

properties of burst spectra, useful for the recognition of plosive consonants, can 

also be extracted with a specific algorithm in parallel with vowel formant loci. 
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Systems for extracting acoustic properties can be conceived in the framework 

of diBtributed problem Bolving in which acoustic properties are facts that drive 

computational processes to the achievement of goals consisting in hypothesis 

generation. 

One motivation in favour of distributed systems is that they can be 

implemented with parallel computer architectures capable of reaching real-time 

performances that cannot be achieved by classical sequential computers. 

Another important motivation is that if knowledge for problem solving is 

distributed into various sources, it is possible to update separately the knowledge 

of each source when new scientific results or new experience pertinent to it 

become available. Furthermore, different data structures and learning algorithms 

can be used for each source of knowledge. These algorithms can be, for example, 

syntactic or parametric. 

A third motivation is that powerful control strategies can be used, for 

example, capable of scheduling the parallel execution of sensory procedures which 

extract new properties from the data when this is requested. 

Based on these motivations, a system has been implemented for which the 

extraction of acoustic properties and generation of syllabic hypotheses is the result 

of a plurality of cooperating activities performed by many processes. This 

cooperation of computational activities has been conceived using the paradigm of 

an Expert Sylltem Society [9,10]. 

Each Expert is associated with a Long Term Memory (LTM) containing the 

specific Expert's knowledge and a Short Term Memory (STM) where data 

interpretations are written. 

Experts are computing agents which execute reasoning programs using 

structural and procedural knowledge. The knowledge of each Expert is expressed 

by a set of planB some of which can be executed in parallel. Communication 

between cooperating tasks is performed by message passing. Some plans are 

executed as a result of a spontaneous data-driven activity. Other plans are 

executed on a request. In any case, each perceptual plan achieves a goal set by 
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the sYBtem strategy. Plan definition will be given later on in this section. 

The novelty of the knowledge based approach proposed here is that, 

descriptions of acoustic properties are extracted and related with phonetic feature 

interpretations using plans that are the result of a long learning effort in which a 

large number of patterns has been analyzed in order to extract invariant 

properties using knowledge about speech analysis, production and perception. For 

example, it is known that the burst spectrum of an alveolar plosive consonant 

should be compact but rules have to be inferred for detecting burst spectra and 

for characterizing compactness and statistics about their performances have to be 

collected. 

Furthermore, rules may specify strategies for speech analysis that depend on 

incomplete feature hypotheses and model-driven predictions. These strategies 

involve variable-resolution spectral analysis (in the time and in the frequency 

domain), morphological analysis of the speech waveform, its loudness and pitch 

contour as well as the choice of a transfer function expression (selection of 

number of poles and zeros) for vocal tract modelling. 

With this approach a phoneme PH. is expressed by a set of phonetic 
1 

features, i.e. 

PH. 
1 

(1) 

Each phonetic feature pf is represented by a relation R with a set of acoustic 
x x 

properties ap , i.e. 
x 

For example, the phoneme IpI is represented as follows: 

IpI = 

(nonsonorant-interrupted-consonant,tense,labial) = 

(nit,l~bial). 

(2) 



www.manaraa.com

573 

The phonetic feature 'labial' in the context of 'nit' features is represented by 

the following relation Rk 

(relation Rk 

(left-side 

(feature (labial)) 

(feature context (nit)) 

(temporal context (followed-bY front vowel))) 

( right-side 

(suprasegmental and time-domain properties) 

(formant-transition properties) 

(burst-spectra properties))) (3) 

The rule for 'labial' takes into account different types of conteztual dependencie8. 

One contextual dependency is represented by the other features that appear with 

'labial' in a plosive phoneme. The other contextual dependences are represented 

by the class of phonemes that can follow or precede the plosive phoneme under 

consideration. Relations are used by plan8 executed by the Expert System. 

A plan is a sequence of items. Each item may contain a precondition 

expre88ion for applying rules of the type Rk, operator8 containing sensory 

procedures, for extracting the properties used by Rk and an algorithm for 

evaluating the evidence of the hypothesis generated by Rk. In practice, a plan is 

a sequence of operators. Each operator is assoicated with a precondition and an 

action. 

Sequences of phonetic feature hypotheses generated under the control of rules 

can be compared with prototypical sequences automatically generated from the 

orthographic form of a sentence using Dynamic Programming (DP). The result 

of the comparisons can be used for recognition or for segmenting continuous 

speech into words and for automatically learning different feature sequences 

corresponding to different pronounciation of a word. Sequences of phonetic 

feature hypotheses can also be used for computing the likelihood that a Markov 

source generates them when a sentence is pronounced. Bahl et al. [3] have 
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proposed algorithms for this purpose. 

STRUCTURE OF THE EXPERT SOCIETY 

Interpretations of the speech waveform are generated by an Expert Society 

implemented on a VAX 11/780. Its structure is shown in Fig. 1. 

EXP 1 is the Acoustic Expert (AE). It has the task of sampling and 

quantizing the signal, performing various types of signal transformations, extracting 

and describing acoustic cues. The term acouBtic cueB will be used for indicating 

spectral or signal properties describing aspects that are relevant for hypothesizing 

phonetic features. Examples of acoustic cues are formant loci, characteristics of 

burst spectra like "compactness", peaks and valleys of signal energy. 

EXP 1 can perform, for example, an analysis based on Linear Prediction 

Coefficients (LPC) for segments labelled with vocalic hypotheses in order to find 

formant loci capable of describing the place and manner of articulation. EXP 1 

can also perform a broad-band spectral analysis based on a Fast Fourier 

Transformation (FFT) when hypotheses of nonsonorant-continuant sounds have 

been made. EXP I' as any Expert, may perform "spontaneous" data-driven 

activities and ezpectation-driven activities based on requests issued by other 

Experts. 

Requests and control messages are exchanged among Experts through the 

"message exchange network" shown in Fig. 1. Data, cues, descriptions and 

hypotheses are written by an Expert into its own Short Term Memory (STM). 

Only the Expert that owns the STM can write into it, but any Expert can read 

any STM. 

EXP 2 is the Phonetic and Syllabic Expert (PSE). It translates descriptions 

of acoustic cues into phonetic feature hypotheBeB. These features describe the 

manner and the place of articulation of each segment of the spoken language. 

This translation may involve the extraction of new acoustic cues by asking EXP 1 
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to execute sensory procedures. 

Symbol 

LPK 

SPK 

MPK 

LOWP 

LNS 

MNS 

LVI 

MVI 

LDD 

SDD 
LMD 

SMD 

LHD 

SHD 

Attributes 

tb,te,ml,zx, 

" 

" 

" 
tb,te,zx 

" 
tb,te,ml,zx 

tb,te,ml,zx 

emin,tb,te,zx 

" 
" 

" 
" 

" 
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Table I 

Primary Acoustic Cues 

Description 

long peak of total energy (TE) 

short peak of TE 

peak of TE of medium duration 

low energy peak of TE 

long nonsonorant tract 

medium nonsonorant tract 

long vocalic tract adjacent to a LNS or 

a MNS in a TE peak 

medium vocalic tract adjacent to a LNS 

a MNS in a TE peak 

long deep dip of total energy 

short deep dip of total energy 

long dip of total energy with medium dep 

short dip of total energy with medium de 

long non-deep dip of total energy 

short non-deep dip of total energy 
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Attribute 

tb 

te 

ml 

emin 

zx 

Symbol 

VF 

VC 

VB 

VFC 

VCB 

VW 

NI 

NA 

NC 

SON 

SONY 

PP 

577 

Table n 

Attribute description 

Description 

time of beginning 

time of end 

maximum. signal energy in the peak 

minimum. total energy in a dip 

maximum zero-crossing density of the signal 

derivative in the tract 

Table m 

Primary Phonetic Features 

Primary Phonetic Feature 

Front vowel 

Central vowel 

Back vowel 

Front or central vowel 

Central or back vowel 

Uncertain vowel 

Nonsonorant interrupted consonant 

Nonsonorant affricate consonant 

Nonsonorant continuant consonant 

Sonorant consonant 

A sonorant or the Iv I consonant 

Possible pause 
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There are some acoustic cues, like peaks and valleys of time . evolutions of 

energies in fIxed bands of the signal that can be extracted by context-independent 

algorithms. These acoustic cues will be called Primary Acoustic Oues (PAC) and 

the phonetic features related to them will be called Primary Phonetic Features 

(PPF). A defInition of primary cues and features used in the system described in 

this paper is given in Tables I, II, III. These algorithms for extracting P ACs 

generate descriptions of a time interval of the signal without being constrained by 

contextual information extracted from adjacent segments. 

Examples of various types of P ACs are shown in Fig. 2. The two curves in 

Fig. 2a represent the time evolution of the signal energy (-) and the 

zero-crossings counts (---) in successive intervals of 10 msec of the fIrst derivative 

of the signal. The phrase is the sequence of letters and digits ECB3V. Fig. 2b 

shows the corresponding PAC description. Time unit is 0.01 sec. LONG and 

SHORT refer to the dip duration. DEEP, MEDIUM and HIGH refer to the 

height of the minimum energy in the dip with respect to background noise 

energy. 

Other functions of EXP 2 are those of segmenting the speech signal into 

Pseudo Syllabic Segments· (PSS) and of producing evidence measurements about 

phonetic hypotheses. The activity of generating PPFs is data-driven, the 

activities of extracting other phonetic features are ezpectation-driven. 

Expectations can be generated by a strategy inside EXP 2 or they can be requests 

transmitted by EXP 3. 

EXP 3 is the Lexical Expert (LE) that generates lexical hypotheses based on 

prosodic features, phonetic hypotheses, syntactic and semantic constraints. As the 

design of the lexical component is still under development, it will be described in 

a future paper. 

The behavior of the Expert Society can be summarized by ,the following 

algorithm written in Concurrent Pascal-like form. 
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Total energy (-) and zel'<H:rossing counts (-) divided by 6 of the 
pronounciation of the sequence E3G PCB (time references are in 
tenth of milliseconds) 

PAC tb t 
e 

LDD 1 7 
LPK 8 28 
LNS 29 38 
SPK 39 41 
LPK 42 60 
SDD 61 65 
MNS 66 72 
LPK 73 89 
LDD 90 98 
LPK 99 111 
SMD 112 113 
LNS 114 126 
LVI 127 141 
SDD 142 145 
LPI( 14() 168 

Fig. 2b Examples of PAC description for the sequence ECB3V 
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A more detailed task-decomposition can be performed for each Expert. This 

decomposition can either describe the parallel execution of operations on different 

segments of the speech signal or the parallel application of different pieces of 

knowledge stored into an Expert's LTM to the same segment. Details of EXP 1 

and EXP 2 are given in 1171. An implementation of EXP 3 is described in the 

following section. 

A PLANNING SYSTEM FOR CONNECTED WORD RECOGNITION 

Canadian postal codes consisting of three sequences of one letter and one 

digit were considered. For this experiment, one speaker pronounced in English 

500 postal codes randomly generated by a computer program. A finite state 

automaton for each symbol to be hypothesized was automatically generated. This 

knowledge source contains acceptable degradations of sequences of PPFs for each 

symbol. Segmentation was performed using dynamic programming for aligning 

sequences of corrupted strings of PPFs with sequences of prototypes. 

Co articulation effects were taken into account in generating sequences of 

prototypes. The set of automata contains 250 states. The automata were 

merged into a network. Ares of the network were labelled with PPF symbols. 

Some nodes of the network were associated actions for generating letter or digit 

hypotheses. At the beginning there is only one pointer that points to the root of 

the network. 
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As EXP I and EXP 2 generate PPF hypotheses, pointers move along the 

network. When a pointer cannot move from a node it is suppressed. When a 

pointer reaches a node with an output action associated to it, it generates an arc 

in a chart phase and a new pointer to the root of the network is created. 

Generation of hypotheses were performed on another 200 sequences using a 

parsing algorithm that generates a chart-parse for each analyzed sequence. 

The following results were obtained: 

Average number of partially overlapping hypotheses: 

Percent of times the right hypothesis was missed: 

Average number of branches in the chart-parse: 

Results seem to be encouraging even if a more extensive training has to be 

done on coarticulation instances especially for very difficult cases like 110 and 

Yll. 

In order to reduce the number of branches of the chart-parse to I and to 

eliminate partially overlapping hypotheses, special disambiguation plans have to be 

developed. 

PSS representations in terms of PPFs are used for preselecting a 

disambiguation plan. As the recognition of connected letters and digits is an 

extremely difficult problem, it was decided to investigate one disambiguation plan 

at a time. A plan PEl was developed for recognizing the letters and digits 

described by sequences of PPFs corresponding to consonant-vowel syllables with 

consonants described by PPFs of the following set : 

01 = (PP, NI, NA, NO) 

and vowels described as VF or VFO. The purpose of PEl is thus that of 

discriminating among the elements of the following El set: 

El = (P,T,K,B,D,G,O,V,E,3). 
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For the sake of generality plan PEl W88 conceived in such a way that it is 

executed whenever PSS of the type Cl VF or Cl VFC are detected and it does 

not take into account any syntactic (top-down) constraint. 

The idea behind the conception of plan PEl is that a redundant set of 

acoustic properties for each phonetic feature is extracted by a chain of operators 

such that redundancy can compensate for lack of knowledge in using the 

properties or for errors in property extraction. With the actual system, it is easy 

to add or delete properties and a program is provided for collecting statistics 

about properties. 

AB the main purpose of this paper is that of describing the system, the 

choice of strategies for using detected properties will be discussed in a future 

work. 

An overview of plan PEl for the recognition of the El set is shown in Fig. 

3. The plan is subdivided into sub-plans (Pell, Pe12, ... , PE15). 

PEll produces an envelope description by analyzing the signal amplitude 

before and after preemphasis. Envelope samples are obtained every msec 

by and the absolute minimum of the signal in a 3 msec interval. The 

envelope description is made by the following alphabet. r represents 

negation) : 

EDA :== SHORT-STEP(ST), 

LONG-STEP(LST), 

NO-STEP(NST), 

STEP WITH HIGH LOW FREQUENCY ENERGY(BZ), 

BURST-PEAK(BUR), 

POSSffiLE-BURST(PBU), 

NBZ==NBZ, 

NBU ==NBUR, 

NPB==NPBU. 
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PE12 detects a buzz.. bar by analyzing the shape of FFT spectra before the 

voice onset. The alphabet of the descriptions it produces is 

BZA = {NOB,BUl,BU2,BU} 

NOB means no buzz and the other three symbols describe degrees of 

buzz-bar evidence (BUI : little evidence, BU : strong evidence) 

PE13 analyzes temporal events at the voice onset. These events are related 

to voice onset time. They are : 

D the delay between the onset of low and high frequency 

energies, 

ZQ the duration of the largest zero-crossing interval of the signal 

at the onset, 

ZR the number of zero-crossing counts in the largest sequence of 

sucessive zero-crossing intervals with duration less than 0.5 

msecs. 

PEl( and PElS perform respectively burst and formant transition analysis. 

PE14 was not used in the experiment described in this sub-section. 

PElS was described in section V. 

D is extracted and used according to a suggestion by Delgutte [15]. 

Preconditions for plan execution are learned with a general-purpose algorithm 

whose details are given in [13]. The following precondition expressions 

PREj (I ~ j ~ 5) have been inferred. 

PRE 1 = (LDD+SDD) '" (LPK+SPK+MNS LPK) 

PRE2 = LDD '" (LPK+SPK) 

PRE3 = (LDD+SDD) * (LPK+SPK) 

PRE4 = SPK+BUR+PBU 

PRES = LDD+LPK 

Notice that '+' represents logical disjunction and A.B means that A preceeds B 

in time. 
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Expressions made of symbols extracted by subplans PEll and PE12 and 

representing positive and negative information have been inferred for each PAC 

description and for each phoneme. 

An example of such rules is given in the following 

E := NBU 
K := NBU 
B := BU 

NBZ 
NBZ 
BZ 

N8T 

8T 

8T 

NBU 

BUR 

y 

NPB 

PBU 
PBU 

There are 96 of such rules in the plan corresponding to 24 sequences of PAC 

descriptions; y is a don't care condition. 

A PAC description is used for indexing a set of rules that is matched 

against the input description produced by the plans. As rules and descriptions 

contain the same number of symbols, a similarity index 81 between a rule and a 

description is easily computed by the Algorithm Similarity that will be described 

in the following. 

The parameters extracted by PE13 and PElS are used in fuzzy relations. 

There is a fuzzy relation for each phoneme and the invocation of a fuzzy relation 

is conditioned by PAC, PEn and PE12 descriptions. Fuzzy relations are 

conjunctions of disjunctions of fuzzy sets. A fuzzy relation computes another 

similarity index between phonemes and data extracted by sUbplans PEl3 and 

PElS. A fuzzy relation can be seen as a conjunction of clauses. Each clause 

contains a disjunction of fuzzy sets defined over a parameter extracted by the 

planning system. 

Fuzzy sets have been derived from a-priori probability distributions of 

parameters extracted by the plans. For each phoneme F, the membership 

function in the disjunction used in the relation of F is I in the interval in which 

70% of the parameter values obtained by the pronounciation of F fall. The 

membership function then decreases toward zero and remains different from zero 

onlv in the interval in which fall 90% of the parameter values obtained bv the 
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Algorithm Similarity (rule,description) 

begin 

end 

c := 0; 

d := OJ 

for each i do 

begin 

end 

![ rule-symbol(i) matches 

description-symbol(i) 

then d := d + 1 

else d := d - 1; 

c := c + 1 

d + c 
similarity := ~ 

pronounciation of F. 

586 

A similarity index S2 is computed by using the maz operator for 

disjunctions and by summing the contributions of each clause and then dividing 

the sum by the number of clauses. 

An example of clauses involved in fuzzy relations is the following 

E 

K 

:= 

:== 

(short D) 

(long D) 

(short ZQ) 

(short ZQ) 

(low ZR) 

(high ZR) 

where "short, long, high, low" are fuzzy sets. There are 43 such relations. 

A-priori probabilities of the two similarity indices can be inferred from 

experiments for every phoneme. These probabilities can be supplied to the 

language model for further preprocessing or, they can be used in a Bayesian 

classifier. In the application described in this sub-section a simpler recognition 

strategy was used. It is described in the next sub-section. 
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Similarity measurements for the hypotheses generated by PEl are averaged 
1 

and the parameter S12 = 2' (S1 + S2) is used for selecting the three candidates 

having the highest similarity with the data. Formant transitions are analyzed 

and a new similarity value 83 is computed for the three candidates. If the 

algorithm for analyzing formant transitions did not find plausible and 

unambiguous candidates, then S3 is not used, otherwise S3 is used for changing 

or confirming the ordering established based on 812. 

S3 is used according to the rules of the following type. Horizontal formant 

patterns give a high S3 for E and bring E in the first position if E was second 

after B or P or third after both of them. There are five of such rules. Their 

details are omitted for the sake of brevity. 

Bayesian classifiers or tree classifiers could be used for this approach. 

Nevertheless it was decided to experiment with a strategy in which expectation 

are built up using a-priori knowledge and parameter histograms. Candidates are 

then ranked according to how well they match expectations based on a voting 

criterion. Experimenting with other strategies is easy in this framework and will 

be done In the future. Various type of a-priori probabilities can be learned in 

this system and used in a recognition process based on an information theoretic 

approach as in [3]. 

Experiments on 1,000 samples of sequences of symbols in the El set 

pronounced by five male and five female speakers have given an error rate of 

0.5% in 8egmentation without requiring any speaker adaptation. 

Performances are shown in Fig. 4. 

CONCLUSIONS 

The following points summarize the most interesting aspects emerging from 

the experience described in this paper. 

1) A distributed knowledge base system allows one to find a detailed 
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explanation of the errors indicating along which directions the system should 

grow. 

2) Speaker-dependent knowledge can be separated from the speaker-independent 

one. 

3) Morphological features are useful ingredients for plan preconditions and for 

recognition. 

4) Segmentation and recognition of place of articulation for vowels do not 

appear to be speaker dependent. 

S) The good segmentation performances allows one to partition the difficulty of 

continuous speech recognition. Segmentation error are well explained. 

6) Vectors of phonetic features can be mapped into symbols making this system 

similar to a vector quantizer where output can be used as an input to a 

recognizer based on DP-matching or on stochastic decoders. 

7) Robust statistical algorithms can be used for clustering parameters used by 

plans. Clusters can be characterized by fuzzy sets. 

8) Phonetic features are characterized by acoustic properties. Redundancies in 

this representation improve the recognition accuracy. 

9) The research on connected letters and digits has potential applications in 

postal code recognition, in file directory access and in directory listing 

retrieval [161. 

10) Planning can be systematically developed by listing the acoUBtic properties or 
phonetic features and the corresponding acoustic cues. Acoustic cues have to 

be described with a suitable formation (i.e. predicate calculus). Descriptions 

can be used for inductively learning rules [131. 
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1. INTRODUCTION 

This paper describes a number of experimental investigations into 

syllable-based acoustic-phonetic analysis of German words; these methods can be 

used as a basic processing stage in a system for automatic speech recognition as 

well as for speech understanding. In this connection the importance of the 

syllable in speech processing by man and machine will first be discussed. Then 

several methods and experiments are presented involving segmentation into 

syllables and recognition of vowels and consonant clusters, as well as two methods 

for lexical access and lexical search using these units. The search in the lexicon 

is necessary in order to find the word in a word-list corresponding to the units 

recognized, or alternatively to determine the most similar word. The most salient 

feature of this system is that so-called demisyllables are used as the processing 

units. 

A fundamental problem faced by every system is that of defining suitable 

segments in the speech signal which can be used for the analysis algorithms of 

the spoken utterance. Particularly when processing continuous speech and large 

vocabularies, some kind of segmentation is necessary, whether explicitly or 

implicitly. The introduction of smaller subword-units reduces the amount of 

training data and comes nearer to a phonetic description of the spoken utterance. 
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It could be shown in previous experiments [1] that the use of smaller units in 

fact results in better performance than whole-word recognition when the 

vocabulary size increases. 

If the segmentation is carried out explicitly in the signal domain or its 

parametric representation, the segmentation procedure is required to provide 

segments which on the one hand are readily found and isolated in the speech 

signal, and which on the other hand can be dealt with as independently of each 

other as possible. It is important to realize that the syntactic and semantic 

interpretation of a sentence can be carried out to best advantage at word level, 

since words fulfill grammatical functions as well as conveying the meaning. Seen 

in this light, it is thus advantageous at the first stage to aim to recognize words, 

or to form hypotheses about words. However, the explicit separation of words in 

continuous speech is an impossible task since words are linked and coarticulated 

with one another in much the same way as syllables. This leads immediately to 

the possibility of regarding syllables, and not words, as the elements with the 

greatest temporal extent from which every spoken utterance can be built up. 

2. THE ROLE OF THE SYLLABLE IN SPEECH PROCESSING 

In fact, there are a number of good reasons for regarding the syllable as the 

basic unit in speech processing. Evidence can be found from the areas of 

- speech production (articulation) 

- speech perception 

- technical realizability of the segmentation 

In the following, each of these areas will be discussed briefly in turn. The basic 

gesture performed in speaking consists of a repeated opening and closing, or 

constriction, of the vocal tract. This is what lies behind the definition of the 

spoken syllable [2]. This basic speech gesture is responsible among other things 

for increased loudness within the syllable nucleus, a typical pitch contour, and a 
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typical development in the quality of the speech sounds; this quality contour is 

most clear in the middle of the syllable. Finally, this production mechanism 

causes the strong co articulatory effects, and thus the interdependency of the 

acoustic cues within the initial and final parts of the syllable. 

Speech perception must also face the question of what units can be assumed. 

A variety of experiments indicate that consonants and vowels are not perceived 

independently of one another. For instance, experiments with 

consonant-vowel-consonant sequences (CVC) showed that both consonant and vowel 

information in a syllable is exploited to identify the vowel [3]. Such findings 

provide grounds for believing that consonants and vowels are not analyzed 

separately from each other, and that perception operates on units having at least 

the extent of a syllable. Of crucial importance is the practical realizability of the 

segmentation procedure in a speech recognition system if we intend to perform an 

explicit segmentation. Two facts facilitate the localization of syllable nuclei quite 

considerably: Firstly, a maximum in the sound pressure level, or to be more 

precise, in the psycho-acoustically defined 'loudness' can be expected [4,5,6]; 

secondly, the vocalic part of the syllable nucleus can be identified quite readily 

from the spectral distribution. These two procedures can be combined to produce 

a simple syllable detector; further details will be presented below. In contrast, 

the precise separation of consecutive syllables presents some problems. However, 

relative minima in the loudness contour can be regarded as suitable candidates for 

syllable boundaries [4,6]. 

3. DEMISYLLABLES AS PROCESSING UNITS 

Since the inventory of syllables is very large, it seems sensible to divide 

every syllable into two demi811llable8, namely into one extending from syllable 

boundary to syllable nucleus, and into one extending from syllable nucleus to the 

next syllable boundary, see fig. 1. The German language possesses more than 

1000 initial and final demisyllables each. Demisyllable segments retain practically 
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initial 

all the advantages of complete syllables, are easy to locate, and include the 

strongest co articulatory effects; in comparison, co articulation between adjacent 

demisyllables is fairly weak. 

A dramatic reduction in the number of classes can be achieved if the 

internal structure of a demisyllable is taken into account: Each demisyllable 

contains a part of the vowel forming the syllable nucleus as well as a consonant 

cluster, which can consist of any sequence of consonants permitted in 

syllable-initial or syllable-final position. It is thus appropriate to incorporate 

different classifiers, namely one each for the vocalic part forming the syllable 

nucleus, for the consonantal part at the beginning of the syllable, and for the 

consonantal part at the end of the syllable [4,6J. The deci'sion units (classes) are 

thus defined to be vowels and consonant clusters. A precise separation of vocalic 

and consonantal parts is not absolutely essential for this purpose. It is sufficient 
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for the part of interest to be emphasized and fed to the appropriate classifier. 

In German, only about 47 initial consonant clusters occur [6,7J, see fig. 2a. 

If extremely rare combinations (such as Idvl) and foreign words are included, the 

size of this inventory increases somewhat of course, but still remains within strict 

limits. 

The number of final consonant clusters is significantly larger since a number 

of inflections can be appended. As depicted in fig. 2b, the inventory can amount 

to a maximum of 159 final consonant clusters, with many occurring very rarely 

indeed. If the vocabulary is limited to 8000 words then 103 final consonant 

clusters are enough, and with a vocabulary consisting of the 1001 most frequent 

German words this number drops to only 50 final consonant clusters [7J. With 

the consonant cluster inventory just described plus a maximum of 20 vowels (long 

vowels, short vowels, and diphthongs) it is possible to represent an almost 

unlimited German vocabulary, for both isolated words and continuous speech. 

4. EXPERIMENTS WITH A SYLLABLE-BASED SPEECH 

RECOGNITION SYSTEM 

A series of basic experiments with a syllable-based speech recognition system 

is described below; the system consists of the following stages: segmentation of 

individual words into demisyllables, classification of consonant clusters and vowels, 

and the subsequent correction of the recognition results with a phonetic lexicon. 

Segmentation: Syllable-based segmentation is made easier if auditorily based 

pre-processing of the speech wave is carried out. Psycho-acoustic investigations 

have shown that the vowels in the syllable nucleus are normally experienced as 

being noticeably louder than their neighbouring consonants. In the following 

experiments a functional model of loudness sensation was thus implemented [8J. 

The analysis starts from a decomposition of the audible frequency range into 24 

'critical bands' [9]. In each band (channel of a filter bank) the 'specific' loudness 
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component N (t) is calculated. We use 22 channels covering the range from 50 v 
Hz to 8.5 kHz. The (total) loudness N(t) is formed from the sum of the specific 

loudness components over all 22 channels. In addition, a 'modified' loudness 

function N (t) is derived as the difference between a lower (channels 3 to 15) 
m 

and a higher (channels 20 to 22) frequency range. This modified loudness 

function is then smoothed by a low-pass filter with a cut-off frequency of about 

10 Hz. Taken together with a rough vowel/non-vowel classification and a lower 

bound for the overall loudness it is then possible to infer the locations of the 
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syllable nuclei directly from the maxima in the function N (t). Fig. 3 shows as 
m 

an example the German word 'Spracherkennung'j here the syllable nuclei (vowels) 

/a:/, /E/, /f/ and /u/ were picked out in this way. The maximum at / I/ was 

ta l 
z 
o 
:::> 
9 

o 200 

Fig. 3 

TI ME --<> 

liME ~ 

Segmentation of the German word 'Spracherkennung' using the 

modified loudness function N (t) and the (total) loudness N(t). 
m 

rejected since it did not fulfill the conditions for a vowel. The minima in the 

loudness contour N(t) show possible positions for the syllable boundaries. The 

experiments with a vocabulary of 1001 words spoken in isolation produced error 

rates of about 4% in the correct identification of the syllable nuclei. 

Cla88ification of con80nant clu8ter8 and vowel8: When classifying 

consonant clusters we are faced with the problem that the vocalic part must be 

suppressed or masked out as far as possible. The problem was solved in the 

following way. Each demisyllable segment covers a series of loudness spectra, 

which are measured at 10 ms intervals, the segments being of varying lengths. 

Using a so-called 'dynamic interpolation' procedure [4,6]' this series is converted 
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into a series with a fIxed number of loudness spectra. Experiments show that 

conversion by interpolation into 12 spectra is sufficient. Suppression of the 

vocalic part is then achieved by dropping 3 interpolated spectra on the vocalic 

side; the 9 remaining spectra now represent the actual pattern for the consonant 

cluster. Classification of the interpolated patterns of the consonant clusters was 

carried out with the help of a geometrical distance measurement by using the 

1-nearest-neighbour rule and a city-block metric. Previous experiments with 

German consonant clusters had resulted in recognition scores for initial consonant 

clusters in the order of 75% on average [6]; the average recognition scores for 

final consonant clusters amounted to 85%. Overall these results show that good 

recognition accuracy can be achieved using the concept of consonant cluster 

recognition and classification by template matching. 

Cla8sification of con80nant clu8ter8 u8ing feature vector8: Since knowledge 

about the phonetic structure could considerably reduce the dimensionality of the 

consonant cluster templates a second method was developed starting from a 

description of the relevant acoustic events within each demisyllable segment [10]. 

In a first step those spectral and temporal features or 'cues' are evaluated which 

can be objectively measured in the signal. The cues describe: the 'loci' of the 

first 3 formants of the syllable vowel, the formant transitions, formant-like 'links' 

for nasals and liquids, duration and spectral distribution of bursts and fricative 

noise ('turbulences'), pauses and the presence of voicing during pauses or 

turbulences. 

A main problem is the dependency of most of the features on phonetic 

context; in this approach the context dependencies are taken into consideration by 

collecting the results of feature extraction within each demisyllable segment. This 

enables the contextual dependencies between the acoustic features to be 

determined statistically from representative speech material. The feature vector 

for an initial consonant cluster as well as for a final consonant cluster have a 

fixed number of components. In syllable-initial position 1 nasal, liquid or glide, 

and up to 2 fricatives or plosives are possible; in syllable-final position the 

maximum number of plosives or fricatives in the test speech material was 3. 
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Therefore, initial consonant clusters are completely described by 24 feature 

components and final consonant clusters by 31 components [101. 

Feature extraction starts from a voicedjunvoicedjsilence-decision for each 

spectral frame. Additionally, formant tracking is performed within voiced parts. 

Acoustic parameters are then derived from the energy in selected frequency bands, 

which allow a gross characterization of the spectral shape. Based on these 

parameters, a set of rules has been established in order to detect voiced and 

unvoiced turbulences and bursts, pauses, and liquid and nasal links. After 

detection the individual features are characterized by gross measurements of their 

spectral and temporal distribution (e.g. center of gravity as well as upper and 

lower cut-off frequency for turbulences, and the frequency values of spectral peaks 

for links) and used as components of the common demisyllable feature vector. 

Classification of the feature vectors was based on Euclidean distance 

measurements within the feature space. For this purpose a special 'average 

normalized distance' was defined which allows the comparison of all feature 

vectors even if they differ quite considerably as to their current composition. For 

comparison, the same speech material was processed by a template matching 

method using a very fine temporal and spectral resolution; III this experiment 22 

spectra with all 24 loudness components were used for each template giving 528 

components altogether. The recognition results showed that the recognition scores 

for the feature representations were about 5-7% lower as compared to the 

template matching approach [10J. But when comparing both methods it has to 

be borne in mind that the feature vector for a consonant cluster has only 24 or 

31 components whereas a corresponding template constructed from a series of 

consecutive spectra needs on average more than 500 components which have to be 

time normalized and compared by appropriate distance measurements. Therefore 

the two methods differ drastically in storage requirements and computation time. 

Thus feature components can in fact be seen as an efficient way of representing 

the units. 
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5. SYLLABLE-BASED SEARCH IN THE LEXICON 

The quality of the search in the lexicon is decisively important for the 

performance of a recognition system. The effectiveness of the correction of 

wrongly recognized words is largely determined by the extent to which a-priori 

knowledge about the distribution of the classifier's wrong decisions can be utilized. 

The experiments to be described next will contrast two procedures, namely: 

a) The words are stored in the lexicon in phonetic transcription in groups of 

consona.nt clusters and vowels (comparison based on phonetic symbols); 

b) The individual demisyllables are given a spectral representation ('prototypes') 

both in the lexicon and at the output of the classifier. 

In fig. 4a and 4b the two methods are contrasted. In the first procedure (fig. 

4a), the similarity between recognition output and lexical entry is measured by 

using alternatives from a confusion matrix containing the a-posteriori probabilities; 

these typical confusions have been obtained in a training phase. The confusion 

matrices are set up separately for initial consonant clusters, final consonant 

clusters and vowels; the lexical entries are in phonetic transcription. 

In the second procedure (fig. 4b), a geometric distance measurement using 

spectral representations ('prototypes') is carried out. The prototypes each consist 

of several consecutive loudness spectra from a complete demisyllable, and thus 

include the consonant cluster and the vowel up to the middle of the syllable [111. 

The test material consisted of the 1001 most frequent German words and were 

spoken by one speaker three times. 

The reference patterns for the classification of the consonant clusters and 

vowels were obtained from a training set. The classification was carried out 

using a distance measurement (l-NN rule with a city block metric). For each 

classified, unknown word the result is a sequence of labels (phonetic symbols) for 

initial consonant clusters, vowels and final consonant clusters. In this primary 

classification stage the average recognition rate for complete words amounted to 
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Principle of the lexical search, (a) using a-posteriori probabilities and 
(b) using spectral prototypes; (ICC=initial consonant cluster, 
FCC=finaI consonant cluster, VOW=VoweI, DS=demisyllable). 
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50.1%; this means that for about half of the words every label in the complete 

word was correct. 

Lexical search with a-posteriori probabilitifls: The confusion matrices were 

etablished by observing the confusions made by the classifier. If the given ('true') 

class membership of a unit is denoted by c, and the recognition result by k, the 

classification of a large sample of these units provides an estimate for the 

conditional probability p(klc). This result can be used to determine the 

a-posteriori probability of c for a given recognition result k: 

with 

p(c) and p(k) 

p(klc) : 

p(clk) = p(klc) . p(c)/p(k), 

A-priori probabilities 

Conditional probabilites 

(decisions of the classifier). 

Let us consider now as an example the search for a monosyllabic word 

consisting of the a units: C = {c1,c2,ca}. The classification output is given 

by: K = {kl ,k2,ka}. The lexical search has to find the word possessing the 

greatest overall a-posteriori probability for this particular recognition result. The 

a-posteriori probability for the word C of the lexicon when K was recognized, is 

expressed as: 

Assuming statistical independence of the three classification results we obtain 

the following expression: 
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p(kl,k2,k3Icl,c2,c3) . P(c1,c2,c3) 

p(k1,k2,k3) 

P(k1Ic1) . P(k2Ic2) . p(k3Ic3) . p( c1,c2,c3) 

p(k1,k2,k3) 

p( c1Ik1)p( c2Ik2)p( c31k3) . p(k1)p(k2)p(k3) . p( c1,c2,c3) 

p(c1)p(cZ)p(c3) . p(k1,k2,k3) 

The term p(k1,kZ,k3) in the denominator and the product p(k1)p(k2)p(k3) in 

the numerator can be disregarded for the following considerations since they 

remain constant in the search. The expresion P(c1,c2,c3) = p(C) is the 

probability of occurrence of word C in the lexicon. Assuming the same 

probability of occurrence for all M words in the lexicon this term can also be left 

out for the search. In addition, it may be admissible to assume that the 

probabilities of occurrence of the classes p(c1), p(c2) and p(c3) in the lexicon are 

equally distributed, so that no class is preferred; in this case the lexical search 

becomes independent of the current distribution of the classes in the lexicon. 

Let the j-th word in the lexicon be designated by C. = {c1.,cZ.'c3.}. Based 
J J J J 

on the conditions outlined above, the lexical search chooses the word C. for which 
1 

the product of the a-posteriori probabilities is greatest: 

for j = 1...M, i <F j ; M = Number of words in the lexicon 

This expression means that the maximum of the products for all words in 

the lexicon must be determined. To this end, the individual classification results 

k1, kZ and k3 are expanded to include all those 'alternatives' offered by the 

confusion matrices for these recognized units. The list of alternatives contains all 

those words to which an inference would be possible. Fig. 5 show8 as an 

example the list of alternatives for the recognition result /' ai Is/. We see that 

several words in the lexicon will fit in here. e.Jl:. 'als' (/'aI8/). 'teils' (!tails/). 
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Expansion of the recognition result /' ai lsi by using alternatives 

from confusion matrices together with their a-posteriori probabilities. 

'Tanz' (ftants/) etc. Every word in the lexicon must now be compared with this 

list of alternatives to check for a match. The recognized word will be the one 

with the highest joint probability calculated from the product of the individual 

a-posteriori probabilities in the columns of this table. 

In the present experiment with the 1001 word vocabulary a total recognition 

score of about 89.0% was achieved, see fig. 6a. The main problem resides in the 

determination of sufficiently precise confusion matrices and the corresponding 

a-posteriori probabilities. 

Lexical search with spectral representations: When spectral prototypes are 

used it is also desirable for the confusions of the preceding classification to be 

represented as well as possible during the lexical search in order to make the best 

correction. This can be realized if the prototypes are represented in a feature 

space similar to the one underlying the classification. Representation in the form 

of demisyllable prototypes is particularly simple. A similar approach using 
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a) 

EXPERIMENT 1 (Lexical search with phonetic symbols): 

- Total recognition score (1001 words): 89.0% 

b) 

EXPERIMENT 2 (Lexical search with spectral prototypes): 

- Total recognition score (1001 words): 90.3% 

Number of components: 22 12 6 3 

10 90.3 90.3 89.9 85.3 

Number of 

5 90.2 90.3 89.9 85.1 

spectra 

2 90.0 90.1 89.5 84.1 

Fig. 6 (a) Recognition score of experiment 1 and (b) recognition scores of 

experiment 2 as a function of the temporal and spectral resolution 

of demisyllable prototypes for lexical search (in %). 

diphone prototypes has already been proposed for English [12]. 

An example for the generation of demisyllable prototypes is depicted in fig. 

7; the demisyllable segmentation procedure and dynamic interpolation is applied to 

each reference word. After that, the prototypes were constructed by averaging all 

demisyllables with the same label from the 2xlOOI words of the training set. To 

handle the lexicon mentioned here about 200 prototypes each are required for the 

initial and final demisyllables. In the first trial each demisyllable prototype (in 
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Generation of demisyllable prototypes from the German word 

'schlie,8lich' . 

the lexicon and the classification result) was represented by 10 spectra with 22 

components. The total recognition rate was 90.3%, see fig. 6b. 

It is not possible to improve the performance further by increasing the 

resolution of the prototypes, and this thus represents an upper bound. On the 

other hand, the table in fig. 6b shows that the spectral and temporal resolution 

of the prototypes can be reduced considerably without significant deterioration in 

correction performance. Even when the demisyllable prototypes were reduced to 2 

spectra with six components, an overall recognition rate of 89.5% was still 

achieved [111. In the present experiment lexical search with spectral 

representations thus attained practically the same recognition performance as a 

lexical search based on a-posteriori probabilities; the spectral representation method 
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is even slightly superior as long as extremely low resolution in the prototypes is 

avoided. When judging the performance of the correction stage it must always 

be borne in mind that uncorrectable confusions and segmentation errors mean that 

the highest recognition result actually obtainable was 94.7%. 

6. OUTLOOK 

It is interesting to compare this 2-stage approach with whole-word recognition 

methods which can be considered as I-stage methods. In other experiments we 

were able to show that the 2-stage method using a demisyllable segmentation and 

classification and a lexical correction stage, yielded better recognition scores when 

compared with whole-word recognition /1/. Further, it is an important advantage 

of the two-stage method that the recognition task is split up into two individual 

tasks, each of which can be realized with a substantially smaller number of 

components. The demisyllable segments thus consist of no more than 220 

components (i.e. 10 spectra with 22 channels). The number of classes in the 

100l-word list used here does not rise above an average of 41 consonant clusters 

and 19 vowels (with diphthongs); the representatives in the lexicon may consist of 

as few as 12 components (2 spectra with 6 channels). Within this feature space 

the classification can be realized easily using straightforward procedures. In 

contrast, for whole-word recognition a high-dimensional space is required in which 

the classification is to be performed. 

The experiments discussed here were based on the speech material of one 

speaker, and were carried out with words spoken in isolation. The applicability 

of the demisyllable concept to the recognition of continuous speech has however 

already been demonstrated in some preliminary experiments [13J; under these 

conditions the number of syllable segmentation errors increases slightly. 

Demisyllables have proven to be an appropriate choice of unit for the 

different processing stages. In sentence recognition syllable-based segmentation 

also has advantages for the subsequent processing stages. Pilot experiments have 
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shown that it is advantageous to take well identified syllables as anchor points 

when generating hypotheses about words; on average, the first syllable only allows 

40 words out of 1001 to be picked out as hypotheses. On this level it is 

possible to employ procedures which allow wrongly indicated syllables to be 

skipped or missing syllables to be inserted. For example, the comparison of the 

word hypotheses can be carried out back on the parametric level, this time 

without segmentation. 
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1. INTRODUCTION 

The problem of the detection, recognition or perception of nasal consonants 

in continuous speech signals is not frequently treated in the literature. Among 

the most significant works on this subject should be mentioned the classical ones 

such as [5,9,41 or more recently [11,3,21. The principal reason that there are 

relatively few papers devoted to this subject is, perhaps, its complexity. In fact, 

from the acoustical point of view, the spectral structure of nasal consonants is 

rather complicated because their spectral envelope is formed not only by the 

resonants of the pharyngeal and nasal cavities but also by the anti-resonants of 

the oral cavity, which is closed during the articulation of nasals. 

In general, the variations of resonants frequencies are not very great and are 

independent of the place of articulation. Only the variation of antiresonant 

frequencies are strictly connected with changes of articulatory parameters, which, 
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in the first approximation, determine the length of the oral cavity branching the 

pharyngeal and nasal parts of the vocal tract. It is very often that the first 

anti-resonant (whose frequency is, for example for /m/, around 1,2 kHZ) involves 

the diminution or even total annihilation of the second formant which frequently 

is in the proximity of this anti-resonant. In addition, the individual voice 

characteristics of speaker can have a significant influence on the final form of the 

nasal consonant spectrum. In fact, the anatomical structure of nasal cavities 

varies from one speaker to the other, so it is difficult to identify the nasal 

consonant from their static acoustic properties determined mainly by the transfer 

function of pharyngo-nasal part of the vocal tract. The inadequacy of the 

approach based only on static parameters of speech is particularly evident in 

recognition systems, especially in those which are based only on general 

description of spectral properties as is the case with the vocoder, for example. 

The purpose of our paper is to present a general scheme of the procedure 

for detecting and, in some particular conditions, for recognition of three French 

nasal consonants /m, n, '{;Il/ spoken in continuous speech. This procedure is 

designed for the speech understanding system described in [8]. 

2. ARTICULATORY AND ACOUSTIC PROPERTIES OF NASAL 

CONSONANTS 

In French, three nasal consonants are essentially distinguished, namely bilabial 

/m/, alveo-dental /n/ and palatal /gn/. The velar /gn/ is present only in words 

of English origin as it is in the case of the word "parking" (car-park). These 

consonants belong to the class of interrupted ones, for which the airflow in the 

oral cavity is stopped by closing lips or by forming lingual obstruction (with 

tongue blade or another part of the tongue body). This attribute is also 

characteristic of nasal consonants as a constant cue. In general, the articulatory 

properties of the same consonant spoken in a stream of sounds are modified by 

the context. In the case of nasals, the most important modifications are in the 
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horizontal plane, especially concerning the place of articulation. But there are 

also some indications that alterations of the aperture in vertical plane are 

possible. The general rule, well established, says that the greater the important 

difference between the articulation forms of adjacent sounds, the more considerable 

is the influence of the following (or in specific cases, of the preceding) sound 

segment. In the case of nasals which are very sensitive to context. This 

influence is most visible for the nasal Inl, for example, pronounced in the 

vicinity of sounds with posterior place of articulation than of those with a more 

central configuration of the tongue body. Similarly, the palatal Ignl as in the 

french word "agneau" (lamb) the place of articulation is more displaced to central 

region of the vocal tract in the vicinity of frontal sounds than for the others. 

From an articulatory point of view, the basic attribute of nasals is the 

closing of the oral cavity and the opening of the velo-pharyngeal part which 

allows air to flow through nasal cavity. On the other hand, between 

pharyngo-nasal and oral cavities we observe a coupling which varies with the 

velum position and oral cavity configuration. 

These articulatory properties result, in the acoustic domain, in the apparition 

of a very low first formant, typically between 200-300 Hz for adult's voices. 

Some acoustical attributes of nasals are independent of the adjacent vowel and 

are marked by a sharp change of total energy level at the release of the nasal 

segment, but this discontinuity is not very great (about 4 dB). The spectral 

changes are also rather sharp and generally, cover the total frequencies so that 

the presence of the nasal in sounds the stream is often easy to discriminate by 

eye on sonagrams, with one exception perhaps for the liquid III which is 

frequently confused with this category of speech sounds. The spectral variations 

at the release of the nasal segment (in CV syllables) can be used for the 

distinction of its place of articulation, as suggested by [1] who demonstrated that 

the place of articulation can be characterized by the spectral energy distribution 

at the consonant release which in the case of alveolars is tilted towards high 

frequencies and for labials is either flat or else tilted towards lower frequencies. 

This tendency is visible on Figures 1 and 2 with sonagrams of bisyllabic 
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Fig. 1 Sonagram of the bisyllabic sequence /momo/ spoken in isolation by male 
speaker. 
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Fig_ 2 Sonagram of the bisyllabic sequence JnonoJ spoken in isolation by the 
same as in Fig. 1 speaker. 
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sequences /momo/ and /nono/ pronounced in isolation by a male speaker. 

However, the system which we have used for speech signal analysis is based 

on a channel vocoder which does not permit a vry fine measurement of temporal 

and spectral parameters. So we consequently have additional difficulties in 

developing the algorithms that will reliably detect and recognize nasal consonants 

in continuous speech. 

Some examples of spectra given by the 14 channel vocoder used in the 

continuous speech understanding system developed in the N ationa} Center of 

Telecommunication Studies (CNET) are presented in Figure 3. 

These spectra were measured at the consonantal release of /m/ and /n/ 

spoken in continuous speech, in the same intervocalic context far-if, by three male 

subjects. From this example it is evident that the distinction between the two 

nasals is not obvious and is strongly dependent on individual voice characteristics. 

3. SPEECH MATERIAL 

In our study we used two sets of sentences. The first was composed of 44 

sentences pronounced by five male speakers (two of them with a slurring 

articulation) and one female. The sentences were constructed in such a way that 

a maximum of possible coarticulations of nasals with 11 oral and 4 nasal vowels 

were obtained. Other coarticulations with some consonants were also taken into 

account and particular attention was paid to sequences of two nasals /mn/ and 

/nm/, nasals followed or preceded by a liquid /1/ or by a voiced fricative and 

stop consonants, because these cases turned out to be the most difficult for the 

nasal segment discrimination. The second set was composed of phonetically 

balanced sentences and of some other pronounced in Breton language for which 

the frequency of occurrence of nasals is relatively high. The overall number of 

subjects was equal to 8 male and 3 female speakers. 
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Fig. 3 Some examples of the nasal consonants' spectra evaluated at the 
release: a) of the Inl, of the Im/. The two nasals were spoken in 
the same intervocalic context I a-il by 3 male subjects. 
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In our study we distinguished three types of intervocalic contexts: 

1) with no important change of the place of vocalic articulation, 

2) with a relatively weak backward of forward movement, 

3) with a strong change of the place. 

In all we have analyzed 236 realizations of nasals: 108 of Iml, 109 of Inl 
and 19 of Ign/. 

4:. SPEECH SIGNAL PROCESSING AND FEATURE PARAMETER 

EVALUATION 

The speech signal was recorded in a sound treated studio, digitalized and 

coded by a 14 channel vocoder implemented on a VAX computer. Mter 

conversion each sentence is represented by a string of samples of 13.3 ms 

duration, each of them characterized by a set of 14 numbers which describes the 

spectral energy distribution. The data provided by vocoder were memorized and 

processed using a set of elaborate procedures. 

Several features parameters were used for detecting nasals: 

1) total energy of analyzed sample, obtained as a simple sum of channels' energy 

2) a parameter called "pente" ('slope'-temporal derivative) which characterizes 

dynamic the spectral variations on two consecutive 8ample8 and was 

calculated by summing up the energy differences in corresponding channels, 

3) the center of spectral gravity determined by formula: 

CDGNO 

14 
E HE. - E . ) 

j=l J mm 

14 
E (E. - E . ) 

. 1 J mm 
J= 
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Our procedure is composed of two parts. The first, for segments previously 

classified as consonantal, determines the samples as potentially nasal. The 

detection of this class of samples is based on the gross spectral shape parameters, 

independently of the context. The principal condition which must be satisfied to 

consider the analyzed sample as potentially nasal, is the presence in the first 

channel (frequency band 250-450 Hz) of an energy peak dominating the others. 

Moreover, this peak in the case of nasals has a characteristic configuration which 

is described using some level differences (in the range of low frequencies, mainly 

below 1000 Hz, as it is presented on Figure 4. In Figure 5, the complete 

specification of parameters with the context-independent detection rule potentially 

nasal sample is given. 

The following step of our analysis of the sequences of nasal samples is 

applied only for those segments whose duration is greater than 27 ms. Some 

realizations of the liquid Ill, a small percept age of voiced stop Ib, d, gl and in 

individual cases voiced fricatives as Ivl and Il.l are classified as potentially nasal. 

In the last two last cases, the results of labelling are strongly speaker dependent. 

As mentioned, a stationary segment is labelled "nasal" if it is composed of 

enough "potentially nasal" spectral frames and if the following contextual and 

temporal criteria hold for each frame: 

1. The energy within the 250-450 Hz bandwidth is less than or equal to that 

computed on the frame corresponding to the following vocalic energy peak. 

2. The energy within the 450-650 Hz bandwidth is at least 65% of the energy 

in the same bandwidth computed on the vocalic energy peak. 

3. At the point j corresponding to the maximum of instability between the 

nasal segment and the following (or preceding) vocalic segment the jump of 

energy is not too high: E. 1 I E. < 2.4 where E. is the energy of the jth 
J+ J J 

frame. 
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SPECTRAL NASAL CONSONANT CUES 

DB 

In/ 
DB , , 

I I 
I I I 

: 02 
I 

103 : Dl 
I I 

I 

CONDITIONS FOR DETECTING 

{ 
Dl ~ 12 DB 

03 > 4 DB 

3 < CDGNO<7 

COGNO = 

04 = E2 

01 = El - E3 

02 = El - E2 

03 = El - MAX CEj) 
Hi'14 

FREQUENCY 

SPECTRAL CENTER 
GRAVITY 

- E3 

FREQUENCY 

THE NASAL FEATURE : 

02 ~ 0 

D4 ~ 0 

Ej = Enltrgy within thlt ]th CHANNEL 

OF 

Fig. 4 Schematic representation of some spectral cues used for detection of 
'potentially nasal' frames with examples of vocoder spectra obtained for 
Iml and In/· 
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NASAL 1: CALCULATED PARAMETERS 

Dl= El - E3 < > E250-450 - E650-850 

D2 = E2 - MAX(Ej) <~ ~> E - MAX(Ej) 
2~j~6 

1 
450 - 1600 

D3 = El - MAX(Ej) <:; ~> El - MAX(Ej) 
7~j~14 1600 - 4200 

D4 = E2 - E3 < > E 450-650 - E650-850 

D5 = El - E4 < > E250-450 - E850-1050 

D6 = El - E5 < > E250-450 - EI050-1300 

RULE USED FOR NASAL SAMPLE DETECTION 

(3~CDGNO~7) " (Dl>12DB) " (D2>4DB) " (D3>8DB) 
" (D4;::4DB) " [(D5;::8DB) v (D6;::8DB)] 

" - AND 
v - OR 
El: Energy in the channel 1 (250 to 450 HZ) 

Fig. 5 Specification of static spectral cues used for detection of nasal frames. 

4. The increase in energy within the 250-450 Hz bandwidth between the end of 

the "nasal" segment and the vocalic peak must not be too large « 12 dB). 

The conditions 1, 3, 4 are schematically presented in Figure 6. 

This part of the algorithm eliminates most of voiced stops and fricatives 

classified previously as potentially nasal. 
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Fig. 6 Temporal cues used for detection of nasal consonants. 
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A preliminary study on the possibility of nasal consonants recognition has 

recently been begun. The first approach is based on a more detailed analysis of 

the spectral part in the frquencies band 820-1660 Hz. The algorithm is 

contextually dependent and begins with the analysis of time movements of the 

maximum in this frequency range, which in this case is divided in four bands (16 

channel vocoder was used). The description of the peak movements is preceded 

by the evaluation of the place of articulation of the vowel which follows the 

nasal. Next, three types of time evolution, in the intervals starting 50 ms before 

and ending 50 ms after the limit separating the nasal and vocalic segments 

(determined by segmentation procedure of G. MERCIER with time sampling of 

13,3 ms), in this range of frequencies are distinguished: 

a) with rising frequency of the peak 

b) with no changes 

c) with frequency falling. 

Another procedure was used to evaluate the mean level of energy in the 

1180-1400 Hz band which in most cases is the region where the second formant 

and the first anti-resonant appear for the bilabial nasal Im/. The time variations 

of this parameter at the vicinity of the vocalic onset (30 ms before and after) 

were taken into account. 

We have noted that for the nasal In! the rising of the peak frequency is 

more accentuated than for Iml, with exception however, for frontal vocalic 

context. In this case, no important variations were observed. It seems, that the 

mean relative level of nasal samples evaluated with regard to the energy spectral 

density can be used for final discriminatioll of nasals pronounced in prevocalic or 

intervocalic context. In the first approximation we have found that the samples 

of the nasal Inl, in most cases have an energy level in this frquency band higher 

than other nasals. A final version of the recognition procedure is under 

preparation. 
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s. RESULTS 

The procedure of nasals detection based on the analysis of gross spectral 

shape parameters was tested on a relatively large sample of speech material in 

which about 240 nasal consonants realized in different contexts were present. 

Most cases of non-detection of nasals were due to the flatness of the 

low-frequency maximum, what is sometimes observed for opened and nasalized 

vowels context. In all the detection score of nasal consonants averaged of 80% 

ranging from one speaker to the other from 70% to 90%. Some difficulties in 

the discrimination of the liquid III from the nasal, spoken in sequence have been 

noted, especially in the cases when these consonants were not separated by a 

schwa. Also for post-vocalic articulations, before a pause or at the end of the 

sentence similar problems were present. The mean error score for III was about 

20%. For other consonants such as voiced fricatives and stops the errors were 

less frequent, not exceeding 7%. 

Some preliminary results of nasal consonants recognition obtained very 

recently for one male subject are presented on Figure 7. 

Before the final recognition decision a weighting coefficient was calculated 

taking into account temporal variations of analyzed parameters evaluated in the 

vicinity of the following vowel onset. The results obtained for the nasal Ignl are 

not satisfactory but we hope that some improvements of elaborated algorithms are 

possible, especially by introducing finer spectral description. 

8. CONCLUSION 

In our paper, we have presented some results of nasal consonants detection 

in continuous speech and of their recognition for the case when they were 

pronounced in bi-syllabic non-sense words. In the first case context-independent 

rules were used. It seems, that some improvements of nasal detection can be 

obtained by taking into account the properties of the adjacent vowel. In the 
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SPOKEN RECOGNIZED SPOKEN RECOGNIZED 
M N GN M N GN 

ma 6 0 4 ma 7 2 0 
na 4 10 9 na 5 13 2 
mi 10 2 7 mi 20 9 1 
ni 2 5 4 ni 4 5 14 
mo 7 3 6 mo 7 2 12 
no 2 20 1 no 4 8 0 
mu 7 2 7 mu 8 0 4 
nu 0 11 4 nu 5 6 4 
mon 6 0 2 mon 10 2 7 
non 2 19 2 non 5 8 0 
man 6 0 4 man 6 4 3 
nan 3 16 1 nan 4 18 3 
mou 9 3 11 mou 7 2 4 
nou 2 15 1 nou 8 7 8 
meu 7 0 8 meu 7 0 0 
neu 2 9 1 neu 2 6 1 
mei 9 0 5 mei 9 0 5 
nei 3 8 4 nei 1 8 2 
mai 6 0 0 mai 7 0 5 
nai 0 8 1 nai 0 8 1 
gna 8 5 18 gna 8 5 15 
gni 4 5 8 gni 3 8 15 
gno 4 5 6 gno 6 6 8 
gnon 3 6 7 gnon 8 5 7 
gnan 5 5 7 gnan 8 2 8 
gnou 6 3 6 gnou 10 3 10 
gneu 7 2 7 gneu 5 9 9 
gnei 7 8 9 gnei 8 6 10 
gnai 5 8 9 gnai 6 6 5 

Preliminary results of nasal consonants recognition in bisyllabic sequences 
jCVCVj. 
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case of nasal recognition the knowledge of context is strictly necessary, especially, 

for multi-speaker systems. 

The algorithms for detection and recognition of nasals, are very simple and 

are based on the analysis of broad spectral cues, which generally make the 

elaborated rules more reliable than algorithms which make use of too precise and 

detailed acoustic properties which are often more context and speaker dependent. 
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